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Introduction to the Problem

G. Granados and I. Harris, Reconstruction of small and extended regions in EIT
with a Robin transmission condition. Inverse Problems, 38 105009 (2022)
(arXiv:2203.09551).
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Inverse Boundary Value Problems

Input =⇒ Physical Model =⇒ Output

Input: Boundary Data

Physical Model: Partial Differential Equation

Output: Values of the Solution

Forward Problem: Input + Physical Model = Output

Inverse Problem: Output + Input = Physical Model
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Reconstruction via Qualitative Methods

Qualitative Methods: Using nonlinear model to reconstruct limited

information with little a priori information, such as the support of the

region in a computationally simple and analytically rigorous manner.
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Restrictions for Iterative Methods

Consider finding the root of xexp(−x2/4) = 0.

Iteration n 0 10 20 30 40

Sequence xn 3 7.4236 9.8408 11.7439 13.3680

Table: Newton’s Method for solving the equation xexp(−x2/4) = 0.
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Restriction of Iterative Methods

Good initial guest is usually needed to insure Convergence.

This requires a priori information that may not be known:

I The number of objects to be recovered.

I Knowledge of the type of Boundary Condition.

I Estimates for the physical parameters/coefficients.

“A lack of information cannot be remedied by any mathematical trickery”- C. Lanczos
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Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a nondestructive type of

imaging method in which the physical parameters of a material is

recovered from surface electrode measurements.

Figure: Picture taken from http://www.siltanen-research.net/
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The EIT Problem under consideration

The electrostatic potential function u ∈ H1(Ω) is Harmonic in Ω\∂D for

any prescribed voltage f ∈ H1/2(∂Ω).

Isaac Harris Oct 2022 8 / 30



Assumption and Notation

Let Ω ⊂ Rd is a simply connected open set with ∂Ω Lipschitz.

Here D ⊂ Ω is a (possibly multiple) connected open set such that

I The boundary ∂D is C2.

I We have that dist(∂Ω,D) > 0.

We define
[[∂νu]]

∣∣
∂D

:= (∂νu
+ − ∂νu−)

∣∣
∂D
.

The ‘+’ notation represents the trace taken from Ω \ D and the ‘−’

notation represents the trace taken from D and γ ∈ L∞+ (∂D).

Isaac Harris Oct 2022 9 / 30



Assumption and Notation

Let Ω ⊂ Rd is a simply connected open set with ∂Ω Lipschitz.

Here D ⊂ Ω is a (possibly multiple) connected open set such that

I The boundary ∂D is C2.

I We have that dist(∂Ω,D) > 0.

We define
[[∂νu]]

∣∣
∂D

:= (∂νu
+ − ∂νu−)

∣∣
∂D
.

The ‘+’ notation represents the trace taken from Ω \ D and the ‘−’

notation represents the trace taken from D and γ ∈ L∞+ (∂D).

Isaac Harris Oct 2022 9 / 30



The Problem Under Consideration

Therefore, the BVP for the electrostatic potential is given by

−∆u = 0 in Ω\∂D with u
∣∣
∂Ω

= f and [[∂νu]]
∣∣
∂D

= γ u

for any given f ∈ H1/2(∂Ω).

We also let u∅ ∈ H1(Ω) is the Harmonic Lifting of f ∈ H1/2(∂Ω).

Inverse Problem

Reconstruct the support of the inclusion D ⊂ Ω from the knowledge of

the Dirichlet-to-Neumann (DtN) maps from H1/2(∂Ω) −→ H−1/2(∂Ω)

ΛD f = ∂νu
∣∣
∂Ω

and Λ∅f = ∂νu∅
∣∣
∂Ω
.
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Recovering Small Targets
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Asymptotic Analysis

Assume 0 < ε� 1 such that D =
J⋃

j=1
(xj + εBj) with |Bj | = O(1).

Using Green’s 2nd theorem for z ∈ ∂Ω we have that

(ΛD − Λ∅)f (z) = −
∫
∂D

γ(x)u(x)∂ν(z)G(x , z) ds(x)

where

∆G(· , z) = −δ(· − z) in Ω and G(· , z) = 0 on ∂Ω.
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Norm Estimate

We have that ‖u − u∅‖H1(Ω) ≤ C ε
d
2

(
1− 2

p

)
‖f ‖H1/2(∂Ω) for the values

p ≥ 2 in d = 2 and 2 ≤ p ≤ 6 in d = 3.

From the estimate, we can conclude that for any z ∈ ∂Ω have that∫
∂D

γ(x)(u − u∅)(x)∂ν(z)G(x , z) ds(x) = O
(
εd
)

as ε→ 0.

We can easily see that

(ΛD − Λ∅)f (z) = −
∫
∂D

γ(x)u∅(x)∂ν(z)G(x , z) ds(x)

−
∫
∂D

γ(x)(u − u∅)(x)∂ν(z)G(x , z) ds(x).
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Asymptotic Expansion

For all z ∈ ∂Ω we have that as ε→ 0∫
∂D

γ(x)u∅(x)∂ν(z)G(x , z) ds(x) =

εd−1
J∑

j=1

|∂Bj |Avg(γj)u∅(xj)∂ν(z)G(xj , z) +O(εd).

From these asymptotic results we have that for any z ∈ ∂Ω we have that

(ΛD − Λ∅)f (z) = −εd−1
J∑

j=1

|∂Bj |Avg(γj)u∅(xj)∂ν(z)G(xj , z) +O(εd)

as the parameter ε→ 0.
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MUSIC Algorithm for Ω = B(0, 1) ⊂ R2

For any f , g ∈ H1/2(∂Ω), we have that〈
g , (ΛD − Λ∅)f

〉
∂Ω

= εd−1
J∑

j=1

|∂Bj |Avg(γj)u∅(xj ; g)u∅(xj ; f ) +O(εd)

Define: matrix Fn,m = εd−1
J∑

j=1

|∂Bj |Avg(γj)u∅(xj ; e
imθ)u∅(xj ; e

inθ)

MUSIC Algorithm

Assume that N + 1 > J. Then for all x ∈ Ω

φx ∈ Range(FF∗) if and only if x ∈ {xj : j = 1, · · · , J}

where φx =
[
u∅
(
x ; e inθ

) ]N
n=0

for fixed x ∈ Ω.
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Let P be the orthogonal projection onto the Null(FF∗). Therefore,

‖Pφx‖ = 0 if and only if x ∈ {xj : j = 1, · · · , J} .

So the imaging functional is given by WMUSIC (x) = ‖Pφx‖−1.

Figure: Reconstruction of to circles with ε = 0.01 with centers (0.25, 0.25) and
(−0.25,−0.25) where δ = 1% noise is added to the data.
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Figure: Reconstruction of to circles with ε = 0.01 with centers (−0.25, 0.25) and
(−0.25,−0.25) where δ = 1% noise is added to the data.
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Recovering Extended Targets
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Initial Factorization of the DtN mappings

For a given h ∈ L2(∂D), define w ∈ H1(Ω) to be the unique solution to

−∆w = 0 in Ω\∂D with w
∣∣
∂Ω

= 0 and [[∂νw ]]
∣∣
∂D

= γ h.

Define: the operator G : L2(∂D)→ H−1/2(∂Ω) by Gh = ∂νw
∣∣
∂Ω

By well-posedness, (ΛD − Λ∅)f = ∂νw
∣∣
∂Ω

provided that h = u
∣∣
∂D

.

Define: the operator S : H1/2(∂Ω)→ L2(∂D) by Sf = u|∂D .

From this we have the factorization (ΛD − Λ∅) = GS .
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Analysis of the Operator S

The operator S and it’s adjoint

The adjoint operator S∗ : L2(∂D)→ H−1/2(∂Ω) is given by

S∗g = ∂νv
∣∣
∂Ω

where v ∈ H1(Ω) satisfies

−∆v = 0 in Ω\∂D with v
∣∣
∂Ω

= 0 and [[∂νv ]]
∣∣
∂D

= γ v + g .

Moreover, the operator S is compact and injective.

Question: Can factorize (ΛD − Λ∅) = S∗TS for some T?
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Decomposing G = S∗T

Find g ∈ L2(∂D) such that S∗g = ∂νw
∣∣
∂Ω

where w ∈ H1(Ω) solves:

−∆w = 0 in Ω\∂D with w
∣∣
∂Ω

= 0 and [[∂νw ]]
∣∣
∂D

= γ h.

as well as

−∆w = 0 in Ω\∂D with w
∣∣
∂Ω

= 0 and [[∂νw ]]
∣∣
∂D

= γ w + g .

Therefore, g = γh − γw ∈ L2(∂D) and we have Gh = S∗g .

Define: the operator T : L2(∂D)→ L2(∂D) as Th = γ(h − w)|∂D .
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Symmetric Factorization

From the operators we have previously defined we have that

(ΛD − Λ∅) = S∗TS

and we have the following result.

Properties of the DtN mapping

The difference of the DtN mappings (ΛD − Λ∅) : H1/2(∂Ω)→ H−1/2(∂Ω)

is compact, injective, and has dense range.

1 Compactness follows from the fact that S is compact

2 Prove the identity:〈
f , (ΛD − Λ∅)f

〉
∂Ω

=

∫
Ω

|∇u|2 dx −
∫
Ω

|∇u∅|2 dx +

∫
∂D

γ|u|2 ds.
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Theorem: Regularized Factorization Method

Assume that

A = S∗TS where S : X → V and T : V → V

such that:

I The operator S is compact and injective.

I The operator T is strictly coercive on Range(S).

Then we have that

` ∈ Range(S∗) ⇐⇒ lim inf
α→0

〈xα ,Axα〉X×X∗ <∞

where xα is the regularized solution to Ax = `.

I. Harris, Regularization of the Factorization Method applied to diffuse optical
tomography. Inverse Problems 37 125010 (2021) arXiv:2106.07743.
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Range of S∗

We have that ∂νG(· , z)
∣∣
∂Ω
∈ Range(S∗) if and only if z ∈ D.

Here G(· , z) is the solution to the problem

∆G(· , z) = −δ(· − z) in Ω and G(· , z) = 0 on ∂Ω.

Coercivity of T

The operator T : L2(∂D)→ L2(∂D) given by Th = γ(h−w)
∣∣
∂D

is strictly

coercive on L2(∂D).

By the BVP for w equation and Green’s 1st Theorem we have that

(Th, h)L2(∂D) =

∫
∂D

γ|h|2 ds +

∫
Ω

|∇w |2 dx .
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Characterization of the region D

The Main Result

The mappings (ΛD − Λ∅) : H1/2(∂Ω)→ H−1/2(∂Ω) uniquely determines

D such that for any z ∈ Ω

z ∈ D if and only if lim inf
α→0

〈f zα , (ΛD − Λ∅)f
z
α 〉∂Ω <∞

where f zα is the regularized solution to (ΛD − Λ∅)f
z = ∂νG(· , z)

∣∣
∂Ω

.

We can show that〈
f zα , (ΛD − Λ∅)f

z
α

〉
∂Ω

=
∑ Φ2

α(λn)

λn

∣∣〈ψn, ∂νG(· , z)〉∂Ω

∣∣2
with {λn;ψn} ∈ R>0 × H1/2(∂Ω) the singular values and right singular

vector of the DtN mapping (ΛD − Λ∅).
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Reconstruction with α = 10−7 and transmission parameter γ = 1

Figure: Reconstruction of a circular domain with noise level δ = 1%.

Here the DtN mapping is computed via separation of variables.
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Reconstruction with α = 10−5 and transmission parameter

γ(x(θ)) =
1

4 + exp(cos θ)

Figure: Reconstruction of a pear-shaped domain with noise level δ = 2%

Here the DtN mapping is computed via a spectral method.
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The Regularization Step is Necessary

An Inverse Scattering Problem: we let D ⊂ Rd with us ∈ H1
loc(Rd)

∆us + k2(1 + q)us = −k2qe ikx ·ŷ in Rd + SRC as |x | → ∞.

I. Harris, Regularization of the Factorization Method with Applications to

Inverse Scattering. Accepted AMS Contemporary Mathematics

(arXiv:2202.13411).

Figure: Left: reconstruction without regularization and Right: reconstruction with
regularization. Here 10% error is added to the far-field data.
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Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions

to recover D =
J⋃

j=1
(xj + εBj) from the Cauchy data from:

−∆u + χ(D)u = 0 in Ω with u = f on ∂Ω

and
∆us + k2us = χ(D) in Ω with us = f on ∂Ω.

2) Consider the case Aδ : X → X ∗ such that ‖Aδ − A‖ → 0 as δ → 0 then

` ∈ Range(S∗) ⇐⇒ lim inf
α→0

lim inf
δ→0

〈
xδα,A

δxδα
〉
X×X∗ <∞

where xδα is the regularized solution to Aδx = `.

Isaac Harris Oct 2022 29 / 30



Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions

to recover D =
J⋃

j=1
(xj + εBj) from the Cauchy data from:

−∆u + χ(D)u = 0 in Ω with u = f on ∂Ω

and
∆us + k2us = χ(D) in Ω with us = f on ∂Ω.

2) Consider the case Aδ : X → X ∗ such that ‖Aδ − A‖ → 0 as δ → 0 then

` ∈ Range(S∗) ⇐⇒ lim inf
α→0

lim inf
δ→0

〈
xδα,A

δxδα
〉
X×X∗ <∞

where xδα is the regularized solution to Aδx = `.

Isaac Harris Oct 2022 29 / 30



Isaac Harris Oct 2022 30 / 30


