Recovering small and extended corroded regions in EIT

Isaac Harris

Department of Mathematics, Purdue University harri814@purdue.edu
Research supported by the NSF DMS Grant 2107891
Joint work with: Govanni Granados
SIAM + Applied \& Numerical Analysis Seminar

Oct 2022

Introduction to the Problem

T- G. Granados and I. Harris, Reconstruction of small and extended regions in EIT with a Robin transmission condition. Inverse Problems, 38105009 (2022) (arXiv:2203.09551).

Inverse Boundary Value Problems

$$
\text { Input } \Longrightarrow \text { Physical Model } \Longrightarrow \text { Output }
$$

Input: Boundary Data
Physical Model: Partial Differential Equation

Output: Values of the Solution

Forward Problem: Input + Physical Model $=$ Output

Inverse Problem: Output + Input $=$ Physical Model

Reconstruction via Qualitative Methods

Qualitative Methods: Using nonlinear model to reconstruct limited information with little a priori information, such as the support of the region in a computationally simple and analytically rigorous manner.
$W(z)>0$

$W(z)=0$

Restrictions for Iterative Methods

Consider finding the root of $\operatorname{xexp}\left(-x^{2} / 4\right)=0$.

Iteration n	0	10	20	30	40
Sequence x_{n}	3	7.4236	9.8408	11.7439	13.3680

Table: Newton's Method for solving the equation $\operatorname{xexp}\left(-x^{2} / 4\right)=0$.

Restriction of Iterative Methods

Good initial guest is usually needed to insure Convergence.

This requires a priori information that may not be known:

- The number of objects to be recovered.
- Knowledge of the type of Boundary Condition.
- Estimates for the physical parameters/coefficients.

[^0]
Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a nondestructive type of imaging method in which the physical parameters of a material is recovered from surface electrode measurements.

Figure: Picture taken from http://www.siltanen-research.net/

The EIT Problem under consideration

The electrostatic potential function $u \in H^{1}(\Omega)$ is Harmonic in $\Omega \backslash \partial D$ for any prescribed voltage $f \in H^{1 / 2}(\partial \Omega)$.

Assumption and Notation

Let $\Omega \subset \mathbb{R}^{d}$ is a simply connected open set with $\partial \Omega$ Lipschitz.

Here $D \subset \Omega$ is a (possibly multiple) connected open set such that

- The boundary ∂D is \mathcal{C}^{2}.
- We have that $\operatorname{dist}(\partial \Omega, \bar{D})>0$.

Assumption and Notation

Let $\Omega \subset \mathbb{R}^{d}$ is a simply connected open set with $\partial \Omega$ Lipschitz.

Here $D \subset \Omega$ is a (possibly multiple) connected open set such that

- The boundary ∂D is \mathcal{C}^{2}.
- We have that $\operatorname{dist}(\partial \Omega, \bar{D})>0$.

We define

$$
\left.\llbracket \partial_{\nu} u \rrbracket\right|_{\partial D}:=\left.\left(\partial_{\nu} u^{+}-\partial_{\nu} u^{-}\right)\right|_{\partial D} .
$$

The ' + ' notation represents the trace taken from $\Omega \backslash \bar{D}$ and the ' - ' notation represents the trace taken from D and $\gamma \in L_{+}^{\infty}(\partial D)$.

The Problem Under Consideration

Therefore, the BVP for the electrostatic potential is given by

$$
-\Delta u=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad u\right|_{\partial \Omega}=f \quad \text { and }\left.\quad \llbracket \partial_{\nu} u \rrbracket\right|_{\partial D}=\gamma u
$$

for any given $f \in H^{1 / 2}(\partial \Omega)$.
We also let $u_{\emptyset} \in H^{1}(\Omega)$ is the Harmonic Lifting of $f \in H^{1 / 2}(\partial \Omega)$.

Inverse Problem

Reconstruct the support of the inclusion $D \subset \Omega$ from the knowledge of the Dirichlet-to-Neumann (DtN) maps from $H^{1 / 2}(\partial \Omega) \longrightarrow H^{-1 / 2}(\partial \Omega)$

$$
\Lambda_{D} f=\left.\partial_{\nu} u\right|_{\partial \Omega} \quad \text { and } \quad \Lambda_{\emptyset} f=\left.\partial_{\nu} u_{\emptyset}\right|_{\partial \Omega}
$$

Recovering Small Targets

Asymptotic Analysis

Assume $0<\epsilon \ll 1$ such that $D=\bigcup_{j=1}^{J}\left(x_{j}+\epsilon B_{j}\right)$ with $\left|B_{j}\right|=\mathcal{O}(1)$.

Using Green's 2 nd theorem for $z \in \partial \Omega$ we have that

$$
\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f(z)=-\int_{\partial D} \gamma(x) u(x) \partial_{\nu(z)} \mathbb{G}(x, z) \mathrm{d} s(x)
$$

where

$$
\Delta \mathbb{G}(\cdot, z)=-\delta(\cdot-z) \quad \text { in } \quad \Omega \quad \text { and } \quad \mathbb{G}(\cdot, z)=0 \quad \text { on } \quad \partial \Omega .
$$

Norm Estimate

We have that $\left\|u-u_{\emptyset}\right\|_{H^{1}(\Omega)} \leq C \epsilon^{\frac{d}{2}\left(1-\frac{2}{p}\right)}\|f\|_{H^{1 / 2}(\partial \Omega)}$ for the values $p \geq 2$ in $d=2$ and $2 \leq p \leq 6$ in $d=3$.

Norm Estimate

We have that $\left\|u-u_{\emptyset}\right\|_{H^{1}(\Omega)} \leq C \epsilon^{\frac{d}{2}\left(1-\frac{2}{p}\right)}\|f\|_{H^{1 / 2}(\partial \Omega)}$ for the values $p \geq 2$ in $d=2$ and $2 \leq p \leq 6$ in $d=3$.

From the estimate, we can conclude that for any $z \in \partial \Omega$ have that

$$
\int_{\partial D} \gamma(x)\left(u-u_{\emptyset}\right)(x) \partial_{\nu(z)} \mathbb{G}(x, z) \mathrm{d} s(x)=\mathcal{O}\left(\epsilon^{d}\right) \quad \text { as } \quad \epsilon \rightarrow 0 .
$$

We can easily see that

$$
\begin{aligned}
\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f(z)=- & \int_{\partial D} \gamma(x) u_{\emptyset}(x) \partial_{\nu(z)} \mathbb{G}(x, z) \mathrm{d} s(x) \\
& \quad-\int_{\partial D} \gamma(x)\left(u-u_{\emptyset}\right)(x) \partial_{\nu(z)} \mathbb{G}(x, z) \mathrm{d} s(x)
\end{aligned}
$$

Asymptotic Expansion

For all $z \in \partial \Omega$ we have that as $\epsilon \rightarrow 0$

$$
\begin{aligned}
& \int_{\partial D} \gamma(x) u_{\emptyset}(x) \partial_{\nu(z)} \mathbb{G}(x, z) \mathrm{d} s(x)= \\
& \quad \epsilon^{d-1} \sum_{j=1}^{J}\left|\partial B_{j}\right| \operatorname{Avg}\left(\gamma_{j}\right) u_{\emptyset}\left(x_{j}\right) \partial_{\nu(z)} \mathbb{G}\left(x_{j}, z\right)+\mathcal{O}\left(\epsilon^{d}\right) .
\end{aligned}
$$

Asymptotic Expansion

For all $z \in \partial \Omega$ we have that as $\epsilon \rightarrow 0$

$$
\begin{aligned}
& \int_{\partial D} \gamma(x) u_{\emptyset}(x) \partial_{\nu(z)} \mathbb{G}(x, z) \mathrm{d} s(x)= \\
& \quad \epsilon^{d-1} \sum_{j=1}^{J}\left|\partial B_{j}\right| \operatorname{Avg}\left(\gamma_{j}\right) u_{\emptyset}\left(x_{j}\right) \partial_{\nu(z)} \mathbb{G}\left(x_{j}, z\right)+\mathcal{O}\left(\epsilon^{d}\right) .
\end{aligned}
$$

From these asymptotic results we have that for any $z \in \partial \Omega$ we have that

$$
\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f(z)=-\epsilon^{d-1} \sum_{j=1}^{J}\left|\partial B_{j}\right| \operatorname{Avg}\left(\gamma_{j}\right) u_{\emptyset}\left(x_{j}\right) \partial_{\nu(z)} \mathbb{G}\left(x_{j}, z\right)+\mathcal{O}\left(\epsilon^{d}\right)
$$

as the parameter $\epsilon \rightarrow 0$.

MUSIC Algorithm for $\Omega=B(0,1) \subset \mathbb{R}^{2}$

For any $f, g \in H^{1 / 2}(\partial \Omega)$, we have that

$$
\left\langle g, \overline{\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f}\right\rangle_{\partial \Omega}=\epsilon^{d-1} \sum_{j=1}^{J}\left|\partial B_{j}\right| \operatorname{Avg}\left(\gamma_{j}\right) u_{\emptyset}\left(x_{j} ; g\right) u_{\emptyset}\left(x_{j} ; f\right)+\mathcal{O}\left(\epsilon^{d}\right)
$$

MUSIC Algorithm for $\Omega=B(0,1) \subset \mathbb{R}^{2}$

For any $f, g \in H^{1 / 2}(\partial \Omega)$, we have that

$$
\left\langle g, \overline{\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f}\right\rangle_{\partial \Omega}=\epsilon^{d-1} \sum_{j=1}^{J}\left|\partial B_{j}\right| \operatorname{Avg}\left(\gamma_{j}\right) u_{\emptyset}\left(x_{j} ; g\right) u_{\emptyset}\left(x_{j} ; f\right)+\mathcal{O}\left(\epsilon^{d}\right)
$$

Define: matrix $\mathbf{F}_{n, m}=\epsilon^{d-1} \sum_{j=1}^{J}\left|\partial B_{j}\right| \operatorname{Avg}\left(\gamma_{j}\right) u_{\emptyset}\left(x_{j} ; e^{\mathrm{i} m \theta}\right) u_{\emptyset}\left(x_{j} ; e^{\mathrm{i} n \theta}\right)$

MUSIC Algorithm

Assume that $N+1>J$. Then for all $x \in \Omega$ $\phi_{x} \in \operatorname{Range}\left(\mathbf{F F}^{*}\right) \quad$ if and only if $\quad x \in\left\{x_{j}: j=1, \cdots, J\right\}$
where $\phi_{x}=\left[u_{\emptyset}\left(x ; e^{\mathrm{i} n \theta}\right)\right]_{n=0}^{N}$ for fixed $x \in \Omega$.

Let \mathbf{P} be the orthogonal projection onto the $\operatorname{Null}\left(\mathbf{F F}^{*}\right)$. Therefore,

$$
\left\|\mathbf{P} \phi_{x}\right\|=0 \quad \text { if and only if } \quad x \in\left\{x_{j}: j=1, \cdots, J\right\} .
$$

So the imaging functional is given by $W_{\text {MUSIC }}(x)=\left\|\mathbf{P} \phi_{x}\right\|^{-1}$.

Figure: Reconstruction of to circles with $\epsilon=0.01$ with centers $(0.25,0.25)$ and $(-0.25,-0.25)$ where $\delta=1 \%$ noise is added to the data.

Figure: Reconstruction of to circles with $\epsilon=0.01$ with centers $(-0.25,0.25)$ and $(-0.25,-0.25)$ where $\delta=1 \%$ noise is added to the data.

Recovering Extended Targets

Initial Factorization of the DtN mappings

For a given $h \in L^{2}(\partial D)$, define $w \in H^{1}(\Omega)$ to be the unique solution to

$$
-\Delta w=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad w\right|_{\partial \Omega}=0 \quad \text { and }\left.\llbracket \partial_{\nu} w \rrbracket\right|_{\partial D}=\gamma h .
$$

Define: the operator $G: L^{2}(\partial D) \rightarrow H^{-1 / 2}(\partial \Omega)$ by $G h=\left.\partial_{\nu} w\right|_{\partial \Omega}$

By well-posedness, $\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f=\left.\partial_{\nu} w\right|_{\partial \Omega}$ provided that $h=\left.u\right|_{\partial D}$.

Initial Factorization of the DtN mappings

For a given $h \in L^{2}(\partial D)$, define $w \in H^{1}(\Omega)$ to be the unique solution to

$$
-\Delta w=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad w\right|_{\partial \Omega}=0 \quad \text { and }\left.\quad \llbracket \partial_{\nu} w \rrbracket\right|_{\partial D}=\gamma h .
$$

Define: the operator $G: L^{2}(\partial D) \rightarrow H^{-1 / 2}(\partial \Omega)$ by $G h=\left.\partial_{\nu} w\right|_{\partial \Omega}$

By well-posedness, $\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f=\left.\partial_{\nu} w\right|_{\partial \Omega}$ provided that $h=\left.u\right|_{\partial D}$.

Define: the operator $S: H^{1 / 2}(\partial \Omega) \rightarrow L^{2}(\partial D)$ by $S f=\left.u\right|_{\partial D}$.

From this we have the factorization $\left(\Lambda_{D}-\Lambda_{\emptyset}\right)=G S$.

Analysis of the Operator S

The operator S and it's adjoint

The adjoint operator $S^{*}: L^{2}(\partial D) \rightarrow H^{-1 / 2}(\partial \Omega)$ is given by

$$
S^{*} g=\left.\partial_{\nu} v\right|_{\partial \Omega}
$$

where $v \in H^{1}(\Omega)$ satisfies

$$
-\Delta v=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad v\right|_{\partial \Omega}=0 \quad \text { and }\left.\quad \llbracket \partial_{\nu} v \rrbracket\right|_{\partial D}=\gamma v+g .
$$

Moreover, the operator S is compact and injective.

Question: Can factorize $\left(\Lambda_{D}-\Lambda_{\emptyset}\right)=S^{*} T S$ for some T ?

Decomposing $G=S^{*} T$

Find $g \in L^{2}(\partial D)$ such that $S^{*} g=\left.\partial_{\nu} w\right|_{\partial \Omega}$ where $w \in H^{1}(\Omega)$ solves:

$$
-\Delta w=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad w\right|_{\partial \Omega}=0 \text { and }\left.\llbracket \partial_{\nu} w \rrbracket\right|_{\partial D}=\gamma h .
$$

as well as

$$
-\Delta w=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad w\right|_{\partial \Omega}=0 \quad \text { and }\left.\llbracket \partial_{\nu} w \rrbracket\right|_{\partial D}=\gamma w+g .
$$

Decomposing $G=S^{*} T$

Find $g \in L^{2}(\partial D)$ such that $S^{*} g=\left.\partial_{\nu} w\right|_{\partial \Omega}$ where $w \in H^{1}(\Omega)$ solves:

$$
-\Delta w=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad w\right|_{\partial \Omega}=0 \quad \text { and }\left.\llbracket \partial_{\nu} w \rrbracket\right|_{\partial D}=\gamma h .
$$

as well as

$$
-\Delta w=0 \text { in } \Omega \backslash \partial D \quad \text { with }\left.\quad w\right|_{\partial \Omega}=0 \quad \text { and }\left.\quad \llbracket \partial_{\nu} w \rrbracket\right|_{\partial D}=\gamma w+g .
$$

Therefore, $g=\gamma h-\gamma w \in L^{2}(\partial D)$ and we have $G h=S^{*} g$.

Define: the operator $T: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ as $T h=\left.\gamma(h-w)\right|_{\partial D}$.

Symmetric Factorization

From the operators we have previously defined we have that

$$
\left(\Lambda_{D}-\Lambda_{\emptyset}\right)=S^{*} T S
$$

and we have the following result.

Properties of the DtN mapping

The difference of the DtN mappings $\left(\Lambda_{D}-\Lambda_{\emptyset}\right): H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)$ is compact, injective, and has dense range.

Symmetric Factorization

From the operators we have previously defined we have that

$$
\left(\Lambda_{D}-\Lambda_{\emptyset}\right)=S^{*} T S
$$

and we have the following result.

Properties of the DtN mapping

The difference of the DtN mappings $\left(\Lambda_{D}-\Lambda_{\emptyset}\right): H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)$ is compact, injective, and has dense range.
(1) Compactness follows from the fact that S is compact
(2) Prove the identity:

$$
\left\langle f,\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f\right\rangle_{\partial \Omega}=\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x-\int_{\Omega}\left|\nabla u_{\emptyset}\right|^{2} \mathrm{~d} x+\int_{\partial D} \gamma|u|^{2} \mathrm{~d} s
$$

Theorem: Regularized Factorization Method

Assume that

$$
A=S^{*} T S \quad \text { where } \quad S: X \rightarrow V \quad \text { and } \quad T: V \rightarrow V
$$

such that:
$>$ The operator S is compact and injective.
\Rightarrow The operator T is strictly coercive on Range (S).
Then we have that

$$
\ell \in \operatorname{Range}\left(S^{*}\right) \quad \Longleftrightarrow \quad \liminf _{\alpha \rightarrow 0}\left\langle x_{\alpha}, A x_{\alpha}\right\rangle_{X \times X^{*}}<\infty
$$

where x_{α} is the regularized solution to $A x=\ell$.
通
I. Harris, Regularization of the Factorization Method applied to diffuse optical tomography. Inverse Problems 37125010 (2021) arXiv:2106.07743.

Range of S^{*}

We have that $\left.\partial_{\nu} \mathbb{G}(\cdot, z)\right|_{\partial \Omega} \in \operatorname{Range}\left(S^{*}\right)$ if and only if $z \in D$.
Here $\mathbb{G}(\cdot, z)$ is the solution to the problem

$$
\Delta \mathbb{G}(\cdot, z)=-\delta(\cdot-z) \text { in } \Omega \text { and } \mathbb{G}(\cdot, z)=0 \text { on } \partial \Omega .
$$

Range of S^{*}

We have that $\left.\partial_{\nu} \mathbb{G}(\cdot, z)\right|_{\partial \Omega} \in \operatorname{Range}\left(S^{*}\right)$ if and only if $z \in D$.
Here $\mathbb{G}(\cdot, z)$ is the solution to the problem

$$
\Delta \mathbb{G}(\cdot, z)=-\delta(\cdot-z) \quad \text { in } \quad \Omega \quad \text { and } \quad \mathbb{G}(\cdot, z)=0 \quad \text { on } \quad \partial \Omega .
$$

Coercivity of T

The operator $T: L^{2}(\partial D) \rightarrow L^{2}(\partial D)$ given by $T h=\left.\gamma(h-w)\right|_{\partial D}$ is strictly coercive on $L^{2}(\partial D)$.

By the BVP for w equation and Green's 1st Theorem we have that

$$
(T h, h)_{L^{2}(\partial D)}=\int_{\partial D} \gamma|h|^{2} \mathrm{~d} s+\int_{\Omega}|\nabla w|^{2} \mathrm{~d} x .
$$

Characterization of the region D

The Main Result

The mappings $\left(\Lambda_{D}-\Lambda_{\emptyset}\right): H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)$ uniquely determines
D such that for any $z \in \Omega$
$z \in D$ if and only if $\liminf _{\alpha \rightarrow 0}\left\langle f_{\alpha}^{z},\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f_{\alpha}^{z}\right\rangle_{\partial \Omega}<\infty$ where f_{α}^{z} is the regularized solution to $\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f^{z}=\left.\partial_{\nu} \mathbb{G}(\cdot, z)\right|_{\partial \Omega}$.

Characterization of the region D

The Main Result

The mappings $\left(\Lambda_{D}-\Lambda_{\emptyset}\right): H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)$ uniquely determines
D such that for any $z \in \Omega$

$$
z \in D \quad \text { if and only if } \liminf _{\alpha \rightarrow 0}\left\langle f_{\alpha}^{z},\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f_{\alpha}^{z}\right\rangle_{\partial \Omega}<\infty
$$

where f_{α}^{z} is the regularized solution to $\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f^{z}=\left.\partial_{\nu} \mathbb{G}(\cdot, z)\right|_{\partial \Omega}$.

We can show that

$$
\left\langle f_{\alpha}^{z},\left(\Lambda_{D}-\Lambda_{\emptyset}\right) f_{\alpha}^{z}\right\rangle_{\partial \Omega}=\sum \frac{\Phi_{\alpha}^{2}\left(\lambda_{n}\right)}{\lambda_{n}}\left|\left\langle\psi_{n}, \partial_{\nu} \mathbb{G}(\cdot, z)\right\rangle_{\partial \Omega}\right|^{2}
$$

with $\left\{\lambda_{n} ; \psi_{n}\right\} \in \mathbb{R}_{>0} \times H^{1 / 2}(\partial \Omega)$ the singular values and right singular vector of the DtN mapping $\left(\Lambda_{D}-\Lambda_{\emptyset}\right)$.

Reconstruction with $\alpha=10^{-7}$ and transmission parameter $\gamma=1$

Figure: Reconstruction of a circular domain with noise level $\delta=1 \%$.

Here the DtN mapping is computed via separation of variables.

Reconstruction with $\alpha=10^{-5}$ and transmission parameter

$$
\gamma(x(\theta))=\frac{1}{4+\exp (\cos \theta)}
$$

Figure: Reconstruction of a pear-shaped domain with noise level $\delta=2 \%$

Here the DtN mapping is computed via a spectral method.

The Regularization Step is Necessary

An Inverse Scattering Problem: we let $D \subset \mathbb{R}^{d}$ with $u^{s} \in H_{l o c}^{1}\left(\mathbb{R}^{d}\right)$

$$
\Delta u^{s}+k^{2}(1+q) u^{s}=-k^{2} q e^{i k x \cdot \hat{y}} \text { in } \mathbb{R}^{d} \quad+\operatorname{SRC} \text { as }|x| \rightarrow \infty
$$

(1. Harris, Regularization of the Factorization Method with Applications to Inverse Scattering. Accepted AMS Contemporary Mathematics (arXiv:2202.13411).

Figure: Left: reconstruction without regularization and Right: reconstruction with regularization. Here 10% error is added to the far-field data.

Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions
to recover $D=\bigcup_{j=1}\left(x_{j}+\epsilon B_{j}\right)$ from the Cauchy data from:
$-\Delta u+\chi(D) u=0$ in Ω with $u=f$ on $\partial \Omega$
and

$$
\Delta u^{s}+k^{2} u^{s}=\chi(D) \text { in } \Omega \text { with } u^{s}=f \text { on } \partial \Omega .
$$

Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions
to recover $D=\bigcup_{j=1}^{J}\left(x_{j}+\epsilon B_{j}\right)$ from the Cauchy data from:

$$
-\Delta u+\chi(D) u=0 \text { in } \Omega \text { with } u=f \text { on } \partial \Omega
$$

and

$$
\Delta u^{s}+k^{2} u^{s}=\chi(D) \text { in } \Omega \text { with } u^{s}=f \text { on } \partial \Omega .
$$

2) Consider the case $A^{\delta}: X \rightarrow X^{*}$ such that $\left\|A^{\delta}-A\right\| \rightarrow 0$ as $\delta \rightarrow 0$ then

$$
\ell \in \operatorname{Range}\left(S^{*}\right) \quad \Longleftrightarrow \quad \liminf _{\alpha \rightarrow 0} \liminf _{\delta \rightarrow 0}\left\langle x_{\alpha}^{\delta}, A^{\delta} x_{\alpha}^{\delta}\right\rangle_{X \times X^{*}}<\infty
$$

where x_{α}^{δ} is the regularized solution to $A^{\delta} x=\ell$.

[^0]: "A lack of information cannot be remedied by any mathematical trickery"- C. Lanczos

