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Inverse Boundary Value Problems

Input = ’ Physical Model ‘ = Output

Input: Boundary Data

Physical Model: Partial Differential Equation

Output: Values of the Solution

Forward Problem: Input + Physical Model = Output

Inverse Problem: QOutput + Input = Physical Model
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Reconstruction via Qualitative Methods

Qualitative Methods: Using nonlinear model to reconstruct limited
information with little a priori information, such as the support of the

region in a computationally simple and analytically rigorous manner.
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Restrictions for Iterative Methods

Consider finding the root of xexp(—x2/4) = 0.

Iteration n | O 10 20 30 40
Sequence x, | 3 | 7.4236 | 9.8408 | 11.7439 | 13.3680

Newton's Method for solving the equation xexp(—x2/4) = 0.
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Restriction of Iterative Methods

Good initial guest is usually needed to insure Convergence.

This requires a priori information that may not be known:
The number of objects to be recovered.
Knowledge of the type of Boundary Condition.

Estimates for the physical parameters/coefficients.

“A lack of information cannot be remedied by any mathematical trickery”- C. Lanczos
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Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a nondestructive type of
imaging method in which the physical parameters of a material is

recovered from surface electrode measurements.
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Picture taken from http://www siltanen-research.net/
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The EIT Problem under consideration

The electrostatic potential function u € H() is Harmonic in Q\9D for

any prescribed voltage f € H/2(0Q).

[o.ull,_=vu
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Assumption and Notation

Let Q € RY is a simply connected open set with 9Q Lipschitz.

Here D C Q is a (possibly multiple) connected open set such that
The boundary 9D is C2.
We have that dist(9, D) > 0.
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Assumption and Notation

Let Q € RY is a simply connected open set with 9Q Lipschitz.

Here D C Q is a (possibly multiple) connected open set such that
The boundary 9D is C2.
We have that dist(9, D) > 0.

We define
[0, ”]”aD (Opu —8,,u*)‘6D.

The ‘4’ notation represents the trace taken from Q\ D and the ‘—'

notation represents the trace taken from D and v € LS°(dD).
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The Problem Under Consideration

Therefore, the BVP for the electrostatic potential is given by
—Au=0 in Q\0D with U‘aﬂ =f and ﬂayu]]‘aD =7u
for any given f € HY/2(9Q).

We also let uy € H*(Q) is the Harmonic Lifting of f € HY/2(09Q).

Inverse Problem

Reconstruct the support of the inclusion D C 2 from the knowledge of

the Dirichlet-to-Neumann (DtN) maps from H'/2(0Q) — H=Y/2(0Q)

Apf = 8,,u‘89 and Agf = al’”@‘aﬂ'
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Recovering Small Targets
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Asymptotic Analysis

J
Assume 0 < € < 1 such that D = |J (x; + €B;) with |B;| = O(1).

Using Green's 2nd theorem for z € 92 we have that
(N = M)f(2) = = [ 1(x)ulx)0,B(x, 2) ds(x)
oD
where
AG(-,z)=—-0(-—2z) in Q and G(-,z)=0 on Q.
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Norm Estimate

d(1_2
We have that [|u — upllp1(q) < Ce? <1 P> [l 1/2(00) for the values

p>2ind=2and2<p<6ind=3.
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Norm Estimate

d(1_2
We have that [|u — upllp1(q) < Ce? <1 P> [l 1/2(00) for the values

p>2ind=2and2<p<6ind=3.

From the estimate, we can conclude that for any z € 92 have that
/’y(x)(u — up)(x)0,(2)G(x, z) ds(x) = O(e?) as e€—0.
aD

We can easily see that

MD—MV@F?i/%@%UﬂﬁﬁﬁJNﬂ@
oD

—/ﬁuXu—%xn@@Gquqn.

oD
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Asymptotic Expansion

For all z € 02 we have that as e — 0

[ 10 (02,0216(x.2) dsx) =

oD

J
/1) " |0B;|Ave(;)up(x)y(2) G (x5, 2) + O().
j=1
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Asymptotic Expansion

For all z € 02 we have that as e — 0

[ 10 (02,0216(x.2) dsx) =

oD

J
/1) " |0B;|Ave(;)up(x)y(2) G (x5, 2) + O().
j=1

From these asymptotic results we have that for any z € 9Q2 we have that

J
(Ao — Ng)f(z) = = Z |0B;|Avg(7j) up(x}) Dy (2 G (xj, 2) + O(€9)

as the parameter € — 0.
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MUSIC Algorithm for Q = B(0,1) C R?

For any f,g € H/2(9Q), we have that

J
(8, (Ao = No)F) g = €771 |0B;|Ave()ug(j; &) ug(xji F) + O(e?)
j=1
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MUSIC Algorithm for Q = B(0,1) C R?

For any f,g € H/2(9Q), we have that
J
(8, (Ao = No)F) g = €771 |0B;|Ave()ug(j; &) ug(xji F) + O(e?)

j=1

J
Define: matrix F,, ,, = €771 Z 10B;|Avg(y;) ug(x;; €™ )ug(xj; €™)
j=1

MUSIC Algorithm
Assume that N +1 > J. Then for all x € Q

¢, € Range(FF*) ifandonlyif xe{x:j=1,---,J}
where ¢, = [uy (x; e) L,N:o for fixed x € €.
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Let P be the orthogonal projection onto the Null(FF*). Therefore,
|Po =0 ifandonlyif xe{x:j=1,---,J}.

So the imaging functional is given by Wyusic(x) = ||Pe, |~ .

X0.2323
Y2823
0 255,81 a5
a5 x-02323 | 4
v-02328 | ||
w0 50 25572

)

Reconstruction of to circles with € = 0.01 with centers (0.25,0.25) and
(—0.25,—0.25) where 6 = 1% noise is added to the data.
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X-0.2020 2
Y 02525

b 22016 X-02029

" Y -02727

Reconstruction of to circles with € = 0.01 with centers (—0.25,0.25) and
(—0.25,—0.25) where 6 = 1% noise is added to the data.

TR



Recovering Extended Targets
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Initial Factorization of the DtN mappings

For a given h € L?(0D), define w € H*(Q) to be the unique solution to

—Aw =0 in Q\0D with W‘(?Q:O and |[61,W]]|8D:'yh.

Define: the operator G : L2(OD) — H~1/2(9Q) by Gh = 8,,W‘8Q J

By well-posedness, (Ap — Ag)f = &,W}m provided that h = “‘aD'
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Initial Factorization of the DtN mappings

For a given h € L?(0D), define w € H*(Q) to be the unique solution to

—Aw =0 in Q\0D with W‘(?Q:O and |[61,W]]|8D:'yh.

Define: the operator G : L2(OD) — H~1/2(9Q) by Gh = 8,,W‘8Q J

By well-posedness, (Ap — Ag)f = &,W}m provided that h = “‘aD'

Define: the operator S : HY/2(9Q) — L?(dD) by Sf = u|sp. J
From this we have the factorization (Ap — Ay) = GS.

TR



Analysis of the Operator S

The operator S and it's adjoint
The adjoint operator S* : [?(dD) — H~Y/2(9Q) is given by

S'g = al""aﬂ
where v € H(Q) satisfies
—Av=0in Q\0D with v|[,o =0 and [J,v]|,, =7V +g.

Moreover, the operator S is compact and injective.

Question: Can factorize (Ap — Ay) = S*TS for some T7?
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Decomposing G = S*T

Find g € L?(8D) such that S*g = 9, w|,, where w € H(Q) solves:
—Aw =0 in Q\0D with W‘aﬂ =0 and |[81,W]H8D =~h.
as well as

—Aw =0 in Q\0D with w]m:o and [[61,W]]‘BDsz+g.
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Decomposing G = S*T

Find g € L?(8D) such that S*g = 9, w|,, where w € H(Q) solves:
—Aw =0 in Q\0D with W‘aﬂ =0 and |[81,W]H8D =~h.
as well as

—Aw =0 in Q\0D with W’aﬂ =0 and [[&,W]HBD =yw+g.
Therefore, g = vh — yw € L%(dD) and we have Gh = S*g.

Define: the operator T : L2(0D) — L2(dD) as Th = ~v(h — w)|sp. J
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Symmetric Factorization

From the operators we have previously defined we have that
(Ap —Ng) =S*TS

and we have the following result.

Properties of the DtN mapping

The difference of the DtN mappings (Ap — ) : H/2(9Q) — H=1/2(6Q)

is compact, injective, and has dense range.

e Hamis Oct2022  22/30



Symmetric Factorization

From the operators we have previously defined we have that
(Ap —Ng) =S*TS

and we have the following result.

Properties of the DtN mapping

The difference of the DtN mappings (Ap — ) : H/2(9Q) — H=1/2(6Q)

is compact, injective, and has dense range.

Q@ Compactness follows from the fact that S is compact
Q Prove the identity:

(f, (Ao = Np)F) g, :/|Vu|2dx—/|Vu(,)|2dx—|-/7|u|2ds.

Q Q oD
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Theorem: Regularized Factorization Method

Assume that
A=S*TS where S: X—=V and T:V -V

such that:

The operator S is compact and injective.

The operator T is strictly coercive on Range(S).
Then we have that

¢ € Range(S*) <« lim igf(xa , AXa ) xx x+ < 00

a—r

where x, is the regularized solution to Ax = /.

[3
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Range of §*
We have that 9,G(-

|39 € Range(S*) if and only if z € D.

Here G(-, z) is the solution to the problem

AG(-,z)=—0(-—2z) in Q and G(-,z)=0 on 0NQ.
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Range of §*
We have that 0,G(- |GQ € Range(S*) if and only if z € D.

Here G(-, z) is the solution to the problem

AG(-,z)=—0(-—2z) in Q and G(-,z)=0 on 0NQ.

Coercivity of T
The operator T : L2(0D) — L2(dD) given by Th = ~y(h — W)‘GD is strictly

coercive on L2(9D).

By the BVP for w equation and Green's 1st Theorem we have that

(Th, h)12(ap) :/7]h2d5+/VW|2dx.
oD Q
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Characterization of the region

The Main Result

The mappings (Ap — Ag) : HY2(0Q) — H~/2(0Q) uniquely determines

D such that for any z € Q

ze D ifandonlyif liminf(fZ (Ap — Ag)fZ)aq < oo

a—0

where 7 is the regularized solution to (Ap — Ay)f? = 9, G(- ‘89
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Characterization of the region

The Main Result

The mappings (Ap — Ag) : HY2(0Q) — H~/2(0Q) uniquely determines

D such that for any z € Q

ze D ifandonlyif liminf(fZ (Ap — Ag)fZ)aq < oo

a—0
where 7 is the regularized solution to (Ap — Ay)f? = 9, G(- ‘89
We can show that
. . ®Z (M) 2
(fZ (Ao = M) FE) ey = )\7’@%5 G(-,2))oql

with {\,;1,} € Rog x HY2(0Q) the singular values and right singular

vector of the DtN mapping (Ap — Ap).
~ lsaacHaris | Oct 2022  25/30



Reconstruction with o = 10~ and transmission parameter v = 1

Reconstruction via Tikhonov filter

Reconstruction with W(z)=02
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Reconstruction of a circular domain with noise level § = 1%.

Here the DtN mapping is computed via separation of variables.
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Reconstruction with a = 107> and transmission parameter

Reconstruction of a pear-shaped domain with noise level

Here the DtN mapping is computed via a spectral method.

Isaac Harris

T4+ exp(cos 0)

Reconstruction with W(z)=0.1
= -
~

=2%
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he Regularization Step is Necessary

An Inverse Scattering Problem: we let D C RY with u® € HL_(R9)
Au® + KX(1+4 q)u® = —k*qe™ in RY 4+ SRC as |x| — oo.

B

Left: reconstruction without regularization and Right: reconstruction with
regularization. Here 10% error is added to the far-field data.
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Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions
J

to recover D = |J (xj + €B;) from the Cauchy data from:

j=1
—Au+x(D)u=0in Q with u=7f on 0Q

and
Au® + k*u® = (D) in Q with u®=f on 0Q.
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Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions
J

to recover D = |J (xj + €B;) from the Cauchy data from:

j=1
—Au+x(D)u=0in Q with u=7f on 0Q
and
Au® + k*u® = (D) in Q with u®=f on 0Q.
2) Consider the case A% : X — X* such that ||A° — A|| — 0 as § — 0 then

" .. .. § A0S
¢ € Range(S*) <«— "2‘;8”'?‘;3‘( <Xa7A Xa>X><X* < o0

where x? is the regularized solution to A%x = .
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