Recovering small and extended corroded regions in EIT

Isaac Harris

Department of Mathematics, Purdue University harri814@purdue.edu Research supported by the NSF DMS Grant 2107891 Joint work with: Govanni Granados

SIAM + Applied & Numerical Analysis Seminar

Oct 2022

Introduction to the Problem

G. Granados and I. Harris, Reconstruction of small and extended regions in EIT with a Robin transmission condition. *Inverse Problems*, **38** 105009 (2022) (arXiv:2203.09551).

Inverse Boundary Value Problems

$$\mathsf{Input} \Longrightarrow \mathsf{Physical Model} \Longrightarrow \mathsf{Output}$$

Input: Boundary Data

Physical Model: Partial Differential Equation

Output: Values of the Solution

Forward Problem: Input + Physical Model = Output

Inverse Problem: Output + Input = Physical Model

Qualitative Methods: Using nonlinear model to reconstruct limited information with **little a priori** information, such as the support of the region in a computationally simple and analytically rigorous manner.

Restrictions for Iterative Methods

Consider finding the root of $x \exp(-x^2/4) = 0$.

Iteration n	0	10	20	30	40
Sequence x_n	3	7.4236	9.8408	11.7439	13.3680

Table: Newton's Method for solving the equation $x \exp(-x^2/4) = 0$.

Good initial guest is usually needed to insure Convergence.

This requires a priori information that may not be known:

- The number of objects to be recovered.
- Knowledge of the type of Boundary Condition.
- Estimates for the physical parameters/coefficients.

"A lack of information cannot be remedied by any mathematical trickery"- C. Lanczos

Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a nondestructive type of imaging method in which the physical parameters of a material is recovered from surface electrode measurements.

Figure: Picture taken from http://www.siltanen-research.net/

The EIT Problem under consideration

The electrostatic potential function $u \in H^1(\Omega)$ is Harmonic in $\Omega \setminus \partial D$ for

any prescribed voltage $f \in H^{1/2}(\partial \Omega)$.

Let $\Omega \subset \mathbb{R}^d$ is a simply connected open set with $\partial \Omega$ Lipschitz.

Here $D \subset \Omega$ is a (possibly multiple) connected open set such that

- The boundary ∂D is C^2 .
- We have that $dist(\partial \Omega, \overline{D}) > 0$.

Let $\Omega \subset \mathbb{R}^d$ is a simply connected open set with $\partial \Omega$ Lipschitz.

Here $D \subset \Omega$ is a (possibly multiple) connected open set such that

- The boundary ∂D is C^2 .
- We have that $dist(\partial \Omega, \overline{D}) > 0$.

We define

$$\llbracket \partial_{\nu} u \rrbracket \Big|_{\partial D} := (\partial_{\nu} u^{+} - \partial_{\nu} u^{-}) \Big|_{\partial D}.$$

The '+' notation represents the trace taken from $\Omega \setminus \overline{D}$ and the '-'

notation represents the trace taken from **D** and $\gamma \in L^{\infty}_{+}(\partial D)$.

Therefore, the BVP for the electrostatic potential is given by

$$-\Delta u = 0$$
 in $\Omega \setminus \partial D$ with $u|_{\partial \Omega} = f$ and $[\![\partial_{\nu} u]\!]|_{\partial D} = \gamma u$ for any given $f \in H^{1/2}(\partial \Omega)$.

We also let $u_{\emptyset} \in H^1(\Omega)$ is the Harmonic Lifting of $f \in H^{1/2}(\partial \Omega)$.

Inverse Problem

Reconstruct the support of the inclusion $D \subset \Omega$ from the knowledge of

the Dirichlet-to-Neumann (DtN) maps from $H^{1/2}(\partial\Omega) \longrightarrow H^{-1/2}(\partial\Omega)$

$$\Lambda_{D} f = \partial_{\nu} u \big|_{\partial \Omega} \quad \text{and} \quad \Lambda_{\emptyset} f = \partial_{\nu} u_{\emptyset} \big|_{\partial \Omega}.$$

Recovering Small Targets

Asymptotic Analysis

Assume $0 < \epsilon \ll 1$ such that $D = \bigcup_{j=1}^{J} (x_j + \epsilon B_j)$ with $|B_j| = O(1)$.

Using Green's 2nd theorem for $z \in \partial \Omega$ we have that

$$(\Lambda_{D} - \Lambda_{\emptyset})f(z) = -\int_{\partial D} \gamma(x)u(x)\partial_{\nu(z)}\mathbb{G}(x,z)\,\mathrm{d}s(x)$$

where

$$\Delta \mathbb{G}(\cdot\,,\,z)=-\delta(\cdot-z)$$
 in Ω and $\mathbb{G}(\cdot\,,z)=0$ on $\partial \Omega.$

Isaac Harris

Norm Estimate

We have that $\|u - u_{\emptyset}\|_{H^1(\Omega)} \leq C \epsilon^{\frac{d}{2}\left(1-\frac{2}{p}\right)} \|f\|_{H^{1/2}(\partial\Omega)}$ for the values

 $p \ge 2$ in d = 2 and $2 \le p \le 6$ in d = 3.

Norm Estimate

We have that
$$||u - u_{\emptyset}||_{H^1(\Omega)} \leq C \epsilon^{\frac{d}{2}\left(1-\frac{2}{p}\right)} ||f||_{H^{1/2}(\partial\Omega)}$$
 for the values $p \geq 2$ in $d = 2$ and $2 \leq p \leq 6$ in $d = 3$.

From the estimate, we can conclude that for any $z\in\partial\Omega$ have that

$$\int\limits_{\partial \boldsymbol{\mathsf{D}}} \gamma(x)(u-u_{\emptyset})(x)\partial_{\nu(z)}\mathbb{G}(x,z)\,\mathsf{d}s(x)=\mathcal{O}\big(\epsilon^d\big)\quad\text{as}\quad\epsilon\to0.$$

We can easily see that

$$(\Lambda_{D} - \Lambda_{\emptyset})f(z) = -\int_{\partial D} \gamma(x)u_{\emptyset}(x)\partial_{\nu(z)}\mathbb{G}(x, z) ds(x) -\int_{\partial D} \gamma(x)(u - u_{\emptyset})(x)\partial_{\nu(z)}\mathbb{G}(x, z) ds(x).$$

Asymptotic Expansion

For all $z \in \partial \Omega$ we have that as $\epsilon \to 0$

$$\int_{\partial D} \gamma(x) u_{\emptyset}(x) \partial_{\nu(z)} \mathbb{G}(x, z) \, \mathrm{d}s(x) = \\ \epsilon^{d-1} \sum_{j=1}^{J} |\partial B_{j}| \operatorname{Avg}(\gamma_{j}) u_{\emptyset}(x_{j}) \partial_{\nu(z)} \mathbb{G}(x_{j}, z) + \mathcal{O}(\epsilon^{d}).$$

Asymptotic Expansion

For all $z \in \partial \Omega$ we have that as $\epsilon \to 0$

$$\int_{\partial D} \gamma(x) u_{\emptyset}(x) \partial_{\nu(z)} \mathbb{G}(x, z) \, \mathrm{d}s(x) = \\ \epsilon^{d-1} \sum_{j=1}^{J} |\partial \mathcal{B}_{j}| \operatorname{Avg}(\gamma_{j}) u_{\emptyset}(\mathbf{x}_{j}) \partial_{\nu(z)} \mathbb{G}(\mathbf{x}_{j}, z) + \mathcal{O}(\epsilon^{d}).$$

From these asymptotic results we have that for any $z \in \partial \Omega$ we have that

$$(\Lambda_{D} - \Lambda_{\emptyset})f(z) = -\epsilon^{d-1} \sum_{j=1}^{J} |\partial \mathcal{B}_{j}| \operatorname{Avg}(\gamma_{j}) u_{\emptyset}(\mathbf{x}_{j}) \partial_{\nu(z)} \mathbb{G}(\mathbf{x}_{j}, z) + \mathcal{O}(\epsilon^{d})$$

as the parameter $\epsilon \rightarrow 0$.

MUSIC Algorithm for $\Omega = B(0,1) \subset \mathbb{R}^2$

For any $f, g \in H^{1/2}(\partial \Omega)$, we have that

$$\langle g, \overline{(\Lambda_{D} - \Lambda_{\emptyset})f} \rangle_{\partial\Omega} = \epsilon^{d-1} \sum_{j=1}^{J} |\partial B_{j}| \operatorname{Avg}(\gamma_{j}) u_{\emptyset}(\mathbf{x}_{j};g) u_{\emptyset}(\mathbf{x}_{j};f) + \mathcal{O}(\epsilon^{d})$$

MUSIC Algorithm for $\Omega = B(0,1) \subset \mathbb{R}^2$

For any $f,g \in H^{1/2}(\partial\Omega)$, we have that

$$\langle g, \overline{(\Lambda_D - \Lambda_{\emptyset})f} \rangle_{\partial\Omega} = \epsilon^{d-1} \sum_{j=1}^{J} |\partial B_j| \operatorname{Avg}(\gamma_j) u_{\emptyset}(\mathbf{x}_j; g) u_{\emptyset}(\mathbf{x}_j; f) + \mathcal{O}(\epsilon^d)$$

Define: matrix
$$\mathbf{F}_{n,m} = \epsilon^{d-1} \sum_{j=1}^{J} |\partial \mathbf{B}_j| \operatorname{Avg}(\gamma_j) u_{\emptyset}(\mathbf{x}_j; e^{im\theta}) u_{\emptyset}(\mathbf{x}_j; e^{in\theta})$$

MUSIC Algorithm

Assume that N + 1 > J. Then for all $x \in \Omega$

$$\phi_x \in Range(\mathbf{FF}^*)$$
 if and only if $x \in \{x_j : j = 1, \cdots, J\}$

where $\phi_x = \left[u_{\emptyset}\left(x; e^{in\theta}\right)\right]_{n=0}^N$ for fixed $x \in \Omega$.

Let **P** be the orthogonal projection onto the Null(**FF**^{*}). Therefore,

$$\|\mathbf{P}\phi_x\| = 0$$
 if and only if $x \in \{\mathbf{x}_j : j = 1, \cdots, J\}$.

So the imaging functional is given by $W_{MUSIC}(x) = \|\mathbf{P}\phi_x\|^{-1}$.

Figure: Reconstruction of to circles with $\epsilon = 0.01$ with centers (0.25, 0.25) and (-0.25, -0.25) where $\delta = 1\%$ noise is added to the data.

Figure: Reconstruction of to circles with $\epsilon = 0.01$ with centers (-0.25, 0.25) and (-0.25, -0.25) where $\delta = 1\%$ noise is added to the data.

Recovering Extended Targets

Initial Factorization of the DtN mappings

For a given $h \in L^2(\partial D)$, define $w \in H^1(\Omega)$ to be the unique solution to

$$-\Delta w = 0$$
 in $\Omega \setminus \partial D$ with $w |_{\partial \Omega} = 0$ and $[\![\partial_{\nu} w]\!]|_{\partial D} = \gamma h.$

Define: the operator $G: L^2(\partial D) \to H^{-1/2}(\partial \Omega)$ by $Gh = \partial_{\nu} w \Big|_{\partial \Omega}$

By well-posedness, $(\Lambda_D - \Lambda_{\emptyset})f = \partial_{\nu}w|_{\partial\Omega}$ provided that $h = u|_{\partial D}$.

Initial Factorization of the DtN mappings

For a given $h \in L^2(\partial D)$, define $w \in H^1(\Omega)$ to be the unique solution to

 $-\Delta w = 0 \text{ in } \Omega \backslash \partial D \text{ with } w \big|_{\partial \Omega} = 0 \text{ and } \left[\!\!\left[\partial_{\nu} w \right]\!\!\right]_{\partial D} = \gamma h.$

Define: the operator $G: L^2(\partial D) \to H^{-1/2}(\partial \Omega)$ by $Gh = \partial_{\nu} w \Big|_{\partial \Omega}$

By well-posedness, $(\Lambda_D - \Lambda_{\emptyset})f = \partial_{\nu}w|_{\partial\Omega}$ provided that $h = u|_{\partial D}$.

Define: the operator $S : H^{1/2}(\partial \Omega) \to L^2(\partial D)$ by $Sf = u|_{\partial D}$.

From this we have the factorization $(\Lambda_D - \Lambda_{\emptyset}) = GS$.

The operator S and it's adjoint

The adjoint operator $S^*: L^2(\partial D) \to H^{-1/2}(\partial \Omega)$ is given by

$$S^*g = \partial_
u v \big|_{\partial\Omega}$$

where $v \in H^1(\Omega)$ satisfies

 $-\Delta v = 0$ in $\Omega \setminus \partial D$ with $v |_{\partial \Omega} = 0$ and $\llbracket \partial_{\nu} v \rrbracket |_{\partial D} = \gamma v + g$.

Moreover, the operator S is compact and injective.

Question: Can factorize $(\Lambda_D - \Lambda_{\emptyset}) = S^* TS$ for some *T*?

Decomposing $G = S^*T$

Find $g \in L^2(\partial D)$ such that $S^*g = \partial_{\nu}w|_{\partial\Omega}$ where $w \in H^1(\Omega)$ solves: $-\Delta w = 0$ in $\Omega \setminus \partial D$ with $w|_{\partial\Omega} = 0$ and $[\![\partial_{\nu}w]\!]|_{\partial D} = \gamma h$.

as well as

 $-\Delta w = 0$ in $\Omega \setminus \partial D$ with $w \Big|_{\partial \Omega} = 0$ and $\llbracket \partial_{\nu} w \rrbracket \Big|_{\partial D} = \gamma w + g$.

Decomposing $G = S^*T$

Find $g \in L^2(\partial D)$ such that $S^*g = \partial_{\nu}w|_{\partial\Omega}$ where $w \in H^1(\Omega)$ solves: $-\Delta w = 0$ in $\Omega \setminus \partial D$ with $w|_{\partial\Omega} = 0$ and $[\![\partial_{\nu}w]\!]|_{\partial D} = \gamma h$.

as well as

$$-\Delta w = 0 \text{ in } \Omega \backslash \partial D \quad \text{with} \quad w \big|_{\partial \Omega} = 0 \quad \text{and} \quad \llbracket \partial_{\nu} w \rrbracket \big|_{\partial D} = \gamma \ w + g.$$

Therefore, $g = \gamma h - \gamma w \in L^2(\partial D)$ and we have $Gh = S^*g$.

Define: the operator $T: L^2(\partial D) \to L^2(\partial D)$ as $Th = \gamma(h - w)|_{\partial D}$.

Symmetric Factorization

From the operators we have previously defined we have that

$$(\Lambda_{D} - \Lambda_{\emptyset}) = S^* TS$$

and we have the following result.

Properties of the DtN mapping

The difference of the DtN mappings $(\Lambda_D - \Lambda_{\emptyset}) : H^{1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega)$ is compact, injective, and has dense range.

Symmetric Factorization

From the operators we have previously defined we have that

$$(\Lambda_{D} - \Lambda_{\emptyset}) = S^* TS$$

and we have the following result.

Properties of the DtN mapping

The difference of the DtN mappings $(\Lambda_D - \Lambda_{\emptyset}) : H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega)$ is compact, injective, and has dense range.

Or Compactness follows from the fact that S is compact

Prove the identity:

$$\langle f, (\Lambda_{D} - \Lambda_{\emptyset})f \rangle_{\partial\Omega} = \int_{\Omega} |\nabla u|^2 \,\mathrm{d}x - \int_{\Omega} |\nabla u_{\emptyset}|^2 \,\mathrm{d}x + \int_{\partial D} \gamma |u|^2 \,\mathrm{d}s.$$

Theorem: Regularized Factorization Method

Assume that

 $A = S^*TS$ where $S: X \to V$ and $T: V \to V$

such that:

The operator S is compact and injective.

▶ The operator *T* is strictly coercive on Range(*S*).

Then we have that

$$\ell \in \operatorname{Range}(S^*) \quad \Longleftrightarrow \quad \liminf_{\alpha \to 0} \langle x_{\alpha}, Ax_{\alpha} \rangle_{X \times X^*} < \infty$$

where x_{α} is the regularized solution to $Ax = \ell$.

I. Harris, Regularization of the Factorization Method applied to diffuse optical tomography. *Inverse Problems* **37** 125010 (2021) arXiv:2106.07743.

Range of S^*

We have that $\partial_{\nu}\mathbb{G}(\cdot, z)|_{\partial\Omega} \in \operatorname{Range}(S^*)$ if and only if $z \in D$.

Here $\mathbb{G}(\cdot, z)$ is the solution to the problem

 $\Delta \mathbb{G}(\cdot, z) = -\delta(\cdot - z)$ in Ω and $\mathbb{G}(\cdot, z) = 0$ on $\partial \Omega$.

Range of S^*

We have that $\partial_{\nu}\mathbb{G}(\cdot, z)|_{\partial\Omega} \in \mathsf{Range}(S^*)$ if and only if $z \in D$.

Here $\mathbb{G}(\cdot, z)$ is the solution to the problem

 $\Delta \mathbb{G}(\cdot, z) = -\delta(\cdot - z)$ in Ω and $\mathbb{G}(\cdot, z) = 0$ on $\partial \Omega$.

Coercivity of T

The operator $T : L^2(\partial D) \to L^2(\partial D)$ given by $Th = \gamma(h - w)|_{\partial D}$ is strictly coercive on $L^2(\partial D)$.

By the BVP for w equation and Green's 1st Theorem we have that

$$(Th, h)_{L^2(\partial D)} = \int_{\partial D} \gamma |h|^2 ds + \int_{\Omega} |\nabla w|^2 dx.$$

Characterization of the region **D**

The Main Result

The mappings $(\Lambda_{D} - \Lambda_{\emptyset}) : H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega)$ uniquely determines

D such that for any $z \in \Omega$

$$z \in D \quad \text{if and only if} \quad \liminf_{\alpha \to 0} \langle f_{\alpha}^z, (\Lambda_D - \Lambda_{\emptyset}) f_{\alpha}^z \rangle_{\partial \Omega} < \infty$$

where f_{α}^{z} is the regularized solution to $(\Lambda_{D} - \Lambda_{\emptyset})f^{z} = \partial_{\nu}\mathbb{G}(\cdot, z)|_{\partial\Omega}$.

Characterization of the region D

The Main Result

The mappings $(\Lambda_{D} - \Lambda_{\emptyset}) : H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega)$ uniquely determines

D such that for any $z \in \Omega$

 $z \in D \quad \text{if and only if} \quad \liminf_{\alpha \to 0} \langle f_{\alpha}^{z}, (\Lambda_{D} - \Lambda_{\emptyset}) f_{\alpha}^{z} \rangle_{\partial \Omega} < \infty$

where f_{α}^{z} is the regularized solution to $(\Lambda_{D} - \Lambda_{\emptyset})f^{z} = \partial_{\nu}\mathbb{G}(\cdot, z)|_{\partial\Omega}$.

We can show that

$$\langle f_{\alpha}^{z}, (\Lambda_{D} - \Lambda_{\emptyset}) f_{\alpha}^{z} \rangle_{\partial\Omega} = \sum \frac{\Phi_{\alpha}^{2}(\lambda_{n})}{\lambda_{n}} |\langle \psi_{n}, \partial_{\nu} \mathbb{G}(\cdot, z) \rangle_{\partial\Omega}|^{2}$$

with $\{\lambda_n; \psi_n\} \in \mathbb{R}_{>0} \times H^{1/2}(\partial \Omega)$ the singular values and right singular vector of the DtN mapping $(\Lambda_D - \Lambda_{\emptyset})$.

Reconstruction with $\alpha = 10^{-7}$ and transmission parameter $\gamma = 1$

Figure: Reconstruction of a circular domain with noise level $\delta = 1\%$.

Here the DtN mapping is computed via separation of variables.

Reconstruction with $\alpha = 10^{-5}$ and transmission parameter

$$\gamma(x(\theta)) = \frac{1}{4 + \exp(\cos \theta)}$$

Figure: Reconstruction of a pear-shaped domain with noise level $\delta = 2\%$

Here the DtN mapping is computed via a spectral method.

Isaac Harris

The Regularization Step is Necessary

An Inverse Scattering Problem: we let $D \subset \mathbb{R}^d$ with $u^s \in H^1_{loc}(\mathbb{R}^d)$ $\Delta u^s + k^2(1+q)u^s = -k^2qe^{ikx\cdot\hat{y}}$ in \mathbb{R}^d + SRC as $|x| \to \infty$.

I. Harris, Regularization of the Factorization Method with Applications to Inverse Scattering. Accepted AMS Contemporary Mathematics (arXiv:2202.13411).

Figure: Left: reconstruction without regularization and Right: reconstruction with regularization. Here 10% error is added to the far-field data.

Isaac Harris

Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions to recover $D = \bigcup_{j=1}^{J} (x_j + \epsilon B_j)$ from the Cauchy data from:

$$-\Delta u + \chi(D)u = 0$$
 in Ω with $u = f$ on $\partial \Omega$

and

$$\Delta u^s + k^2 u^s = \chi(D)$$
 in Ω with $u^s = f$ on $\partial \Omega$.

Some Ongoing Work

1) Using the Reciprocity Gap Functional along with asymptotic expansions to recover $D = \bigcup_{j=1}^{J} (x_j + \epsilon B_j)$ from the Cauchy data from:

$$-\Delta u + \chi(D)u = 0$$
 in Ω with $u = f$ on $\partial \Omega$

and

$$\Delta u^s + k^2 u^s = \chi(D)$$
 in Ω with $u^s = f$ on $\partial \Omega$.

2) Consider the case $A^{\delta}: X \to X^*$ such that $\|A^{\delta} - A\| \to 0$ as $\delta \to 0$ then

$$\ell \in \mathsf{Range}(S^*) \quad \iff \quad \liminf_{\alpha \to 0} \liminf_{\delta \to 0} \left\langle x_{\alpha}^{\delta}, A^{\delta} x_{\alpha}^{\delta} \right\rangle_{X \times X^*} < \infty$$

where x_{α}^{δ} is the regularized solution to $A^{\delta}x = \ell$.

