Finite Expression Method for **Solving High-Dimensional PDEs**

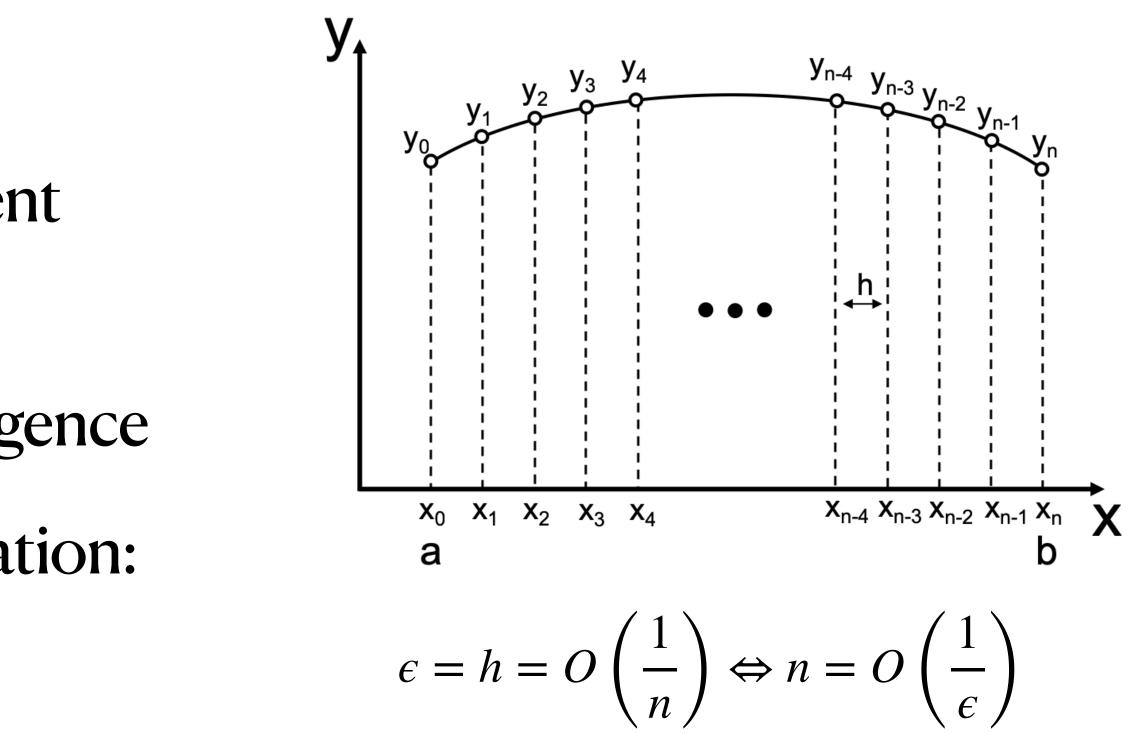
Haizhao Yang **Department of Mathematics University of Maryland College Park**

Applied and Numerical Seminar/SIAM Seminar University of Florida Sep 9th, 2022

Overview of PDE Solvers

Mesh-based methods:

- Finite difference method, finite element method, etc.
- High accuracy with numerical convergence
- Curse of dimensionality in approximation: $O(1/\epsilon^d)$ parameters



Overview of PDE Solvers

Mesh-free methods:

O Neural network-based methods (dating back to 1990s)

• e.g., $\mathcal{D}(u) = f$ in Ω and $\mathcal{B}(u) = g$ on $\partial \Omega$

• A neural network $\phi(x; \theta^*)$ is constructed to approximate the solution u via least square fitting $\theta^* = \arg\min_{\theta} \mathscr{L}(\theta) := \arg\min_{\theta} \|\mathscr{D}\phi(x;\theta) - f(x)\|_2^2 + \lambda \|\mathscr{B}\phi(x;\theta) - g(x)\|_2^2$

or numerically

 $\theta^* = \arg\min_{\theta} \mathscr{L}(\theta) := \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^n |\mathscr{D}q|$

where $\lambda > 0$ is a hyperparameter

$$\phi(x_i;\theta) - f(x_i)|^2 + \lambda \frac{1}{m} \sum_{j=1}^m |\mathscr{B}\phi(x_j;\theta) - g(x_j)|^2$$

Overview of PDE Solvers

Neural networks

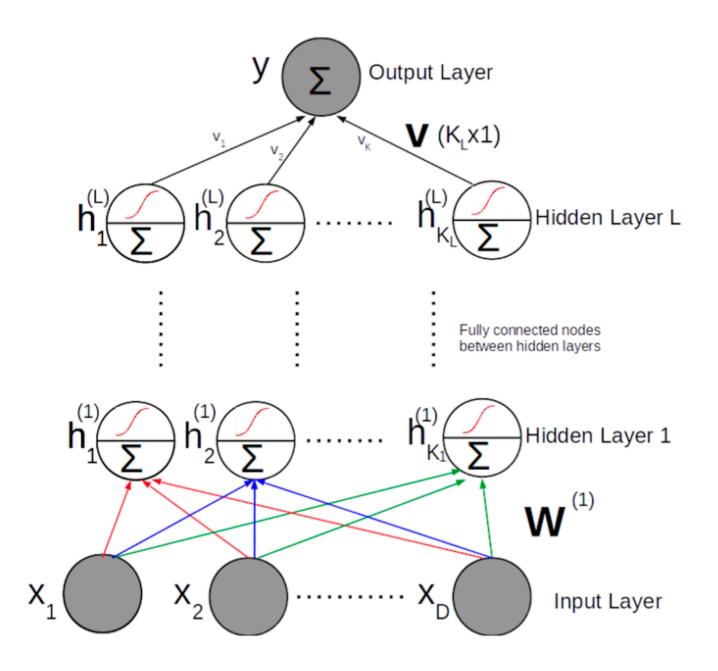
O No curse of dimensionality in approximation

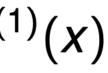
- O(d²) parameters to achieve arbitrary accuracy, Shen, Y., Zhang, arXiv:2107.02397
- O Curse of dimensionality in numerical computation
 - Optimal nonlinear approximation with continuous parameter selection, DeVore, Howard, Micchelli, 1989

$$\mathbf{y} = \mathbf{h}(\mathbf{x};\theta) := \mathbf{T} \circ \phi(\mathbf{x}) := \mathbf{T} \circ \mathbf{h}^{(L)} \circ \mathbf{h}^{(L-1)} \circ \cdots \circ \mathbf{h}^{(L-1)}$$

where

$$h^{(i)}(x) = \sigma(W^{(i)^T}x + b^{(i)});$$
 $T(x) = V^T x;$
 $\theta = (W^{(1)}, \cdots, W^{(L)}, b^{(1)}, \cdots, b^{(L)}, V).$





• Question: How to obtain a numerical solver scalable in dimension?

O Idea: Find an appropriately small function space with stable computation

O Question: What function space is appropriate?

O Ideas:

Barron space: functions with integral representation 2021)

e.g.
$$f(\mathbf{x}) = \int_{\Omega} a\sigma(\mathbf{b}^T \mathbf{x} + c)\rho(da, d\mathbf{b}, dc),$$

where ρ is a probability distribution or more particularly a Fourier representation

$$f(\mathbf{x}) = \int_{\mathbb{R}^d} \hat{f}(\omega) \cos(\omega^T \mathbf{x}) d\omega = \int_{\mathbb{R}^d} d\omega$$

• Ours: functions with **finite expressions**

• Barron space: functions with integral representations (Barron, 1993, E et al. 2019, Du et al. 2021, Xu et al.

 $\mathbf{x} \in X$

 $a\cos(\omega^T \mathbf{x})\rho(da, d\omega)$

O Question: Why finite expressions? **O Ideas:**

- Simple, intuitive, and interpretable
- Sparse or low-complexity structure of a highdimensional problem

Finite Expression Method (FEX)

Liang and Y. arXiv:2206.10121

Motivating Problem:

O A **structured** high-dimensional Poisson equation

$$-\Delta u = f \quad \text{for } x \in \Omega, \quad u =$$

with a solution $u(x) = \frac{1}{2} \sum_{i=1}^{d} x_i^2$ of low complexity $O(d)$, i.e.,

Idea:

O Find an explicit expression that approximates the solution of a PDE O Function space with finite expressions

- Mathematical expressions: a combination of symbols with rules to form a valid function, e.g., sin(2x) + 5
- *k*-finite expression: a mathematical expression with at most *k* operators
- Function space in FEX: \mathbb{S}_k as the set of *s*-finite expressions with $s \leq k$

g for $x \in \partial \Omega$

O(d) operators in this expression

Finite Expression Method (FEX)

Liang and Y. <u>arXiv:2206.10121</u>

Advantages: No curse of dimensionality in approximation

- NN has finite expressions:
- operators including ``+", ``-", ``X", ``/", ``max $\{0,x\}$ ", ``sin(x)", and ``2^x". Let

• NN: $O(d^2)$ parameters to achieve arbitrary accuracy, Shen, Y., Zhang, <u>arXiv:2107.02397</u>

• **Theorem** (Liang and Y. 2022) Suppose the function space is S_k generated with $p \in [1, +\infty)$. For any f in the Holder function class $\mathscr{H}^{\alpha}_{\mu}([0,1]^d)$ and $\varepsilon > 0$, there exists a k-finite expression ϕ in \mathbb{S}_k such that $\|f - \phi\|_{L^p} \leq \varepsilon$, if $k \geq \mathcal{O}(d^2(\log d + \log - 1)^2)$.

Finite Expression Method (FEX)

Liang and Y. <u>arXiv:2206.10121</u>

Advantages:

- Lessen the curse of dimensionality in numerical computation for structured problems
- To be proved numerically

Finite Expression Method

Least square based FEX

- e.g., $\mathcal{D}(u) = f$ in Ω and $\mathcal{B}(u) = g$ on $\partial \Omega$
- A mathematical expression u^* to approximate the PDE solution via
- $u^* = \arg\min_{u \in \mathbb{S}_k} \mathscr{L}(u) := \arg\min_{u \in \mathbb{S}_k} \|\mathscr{D}u\|$
- Or numerically

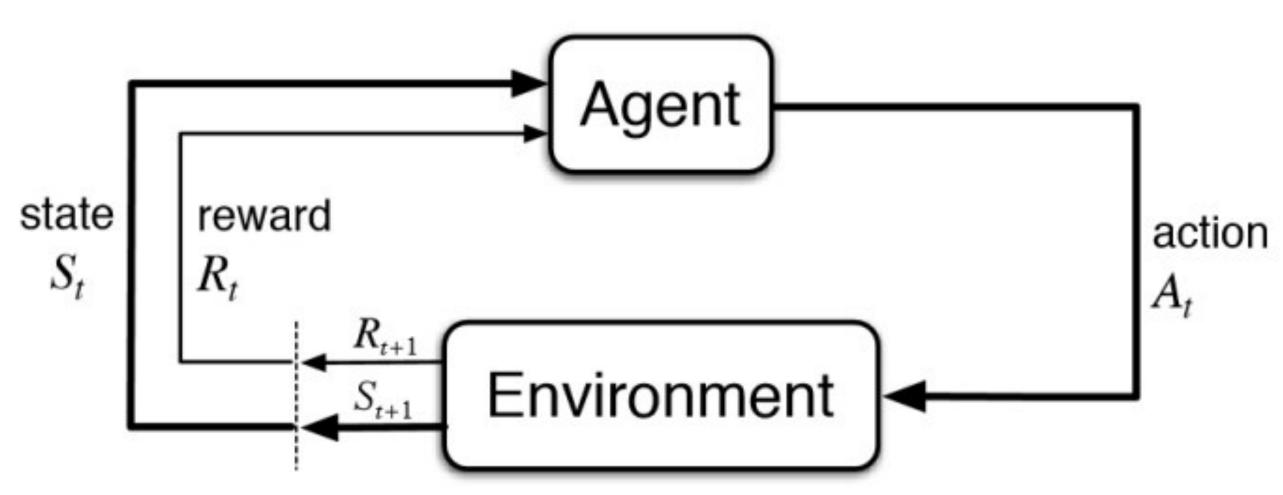
 $u^* = \arg\min_{u \in \mathbb{S}_k} \mathscr{L}(u) := \arg\min_{u \in \mathbb{S}_k} \frac{1}{n} \sum_{i=1}^n$

O Question: how to solve this combinatorial optimization problem?

$$-f\|_{2}^{2} + \lambda\|\mathscr{B}u - g\|_{2}^{2}$$

$$|\mathcal{D}u(x_i) - f(x_i)|^2 + \lambda \frac{1}{m} \sum_{j=1}^m |\mathcal{B}u(x_j) - g(x_j)|^2$$

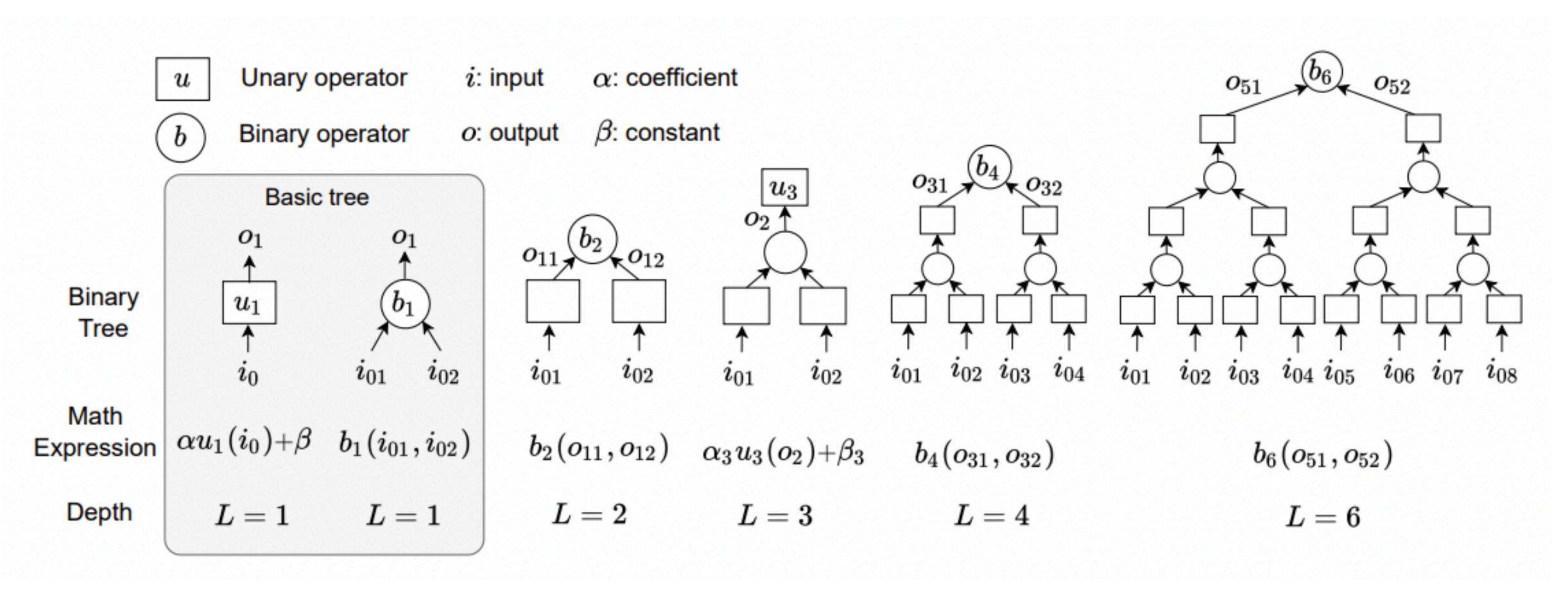
Reinforcement Learning for Combinatorial Optimization



By Richard S. Sutton and Andrew G. Barto.

- **Goal:** Apply reinforcement learning to select mathematical expressions to solve a PDE
- Ideas:
 - Reformulate the sequential (selection, realization, evaluation) procedure as a sequence of 1. (action, state, reward)
 - Reformulate the decision strategy for selection as the policy to take actions 2.
 - The PDE regression quality as the reward 3.

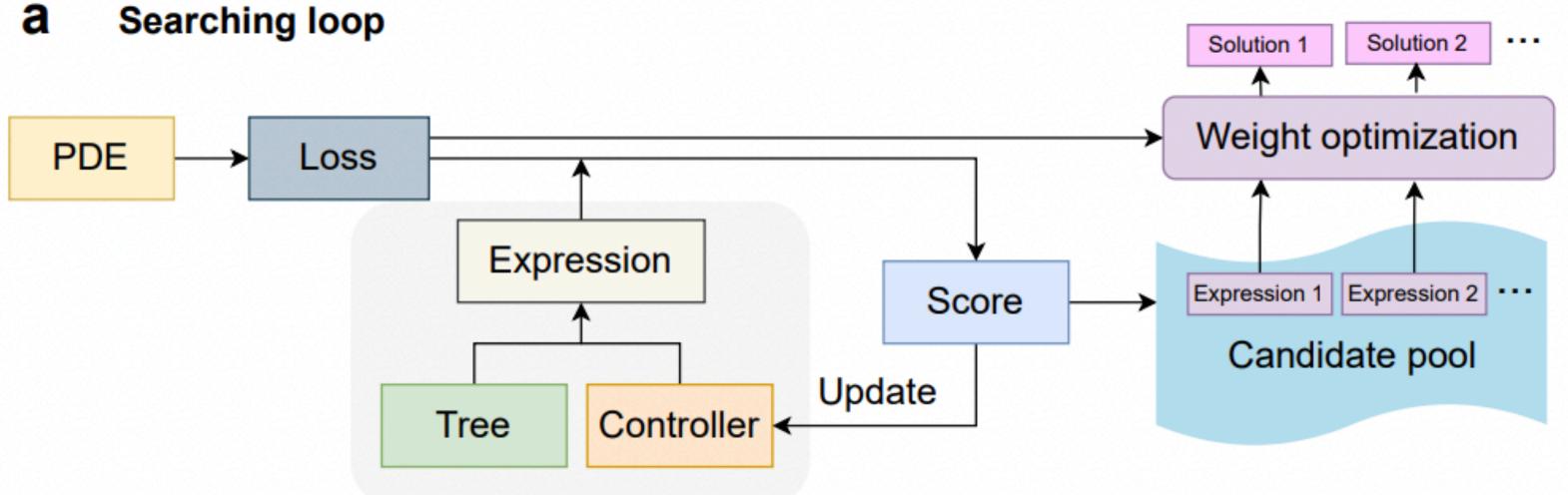
Expression Generation

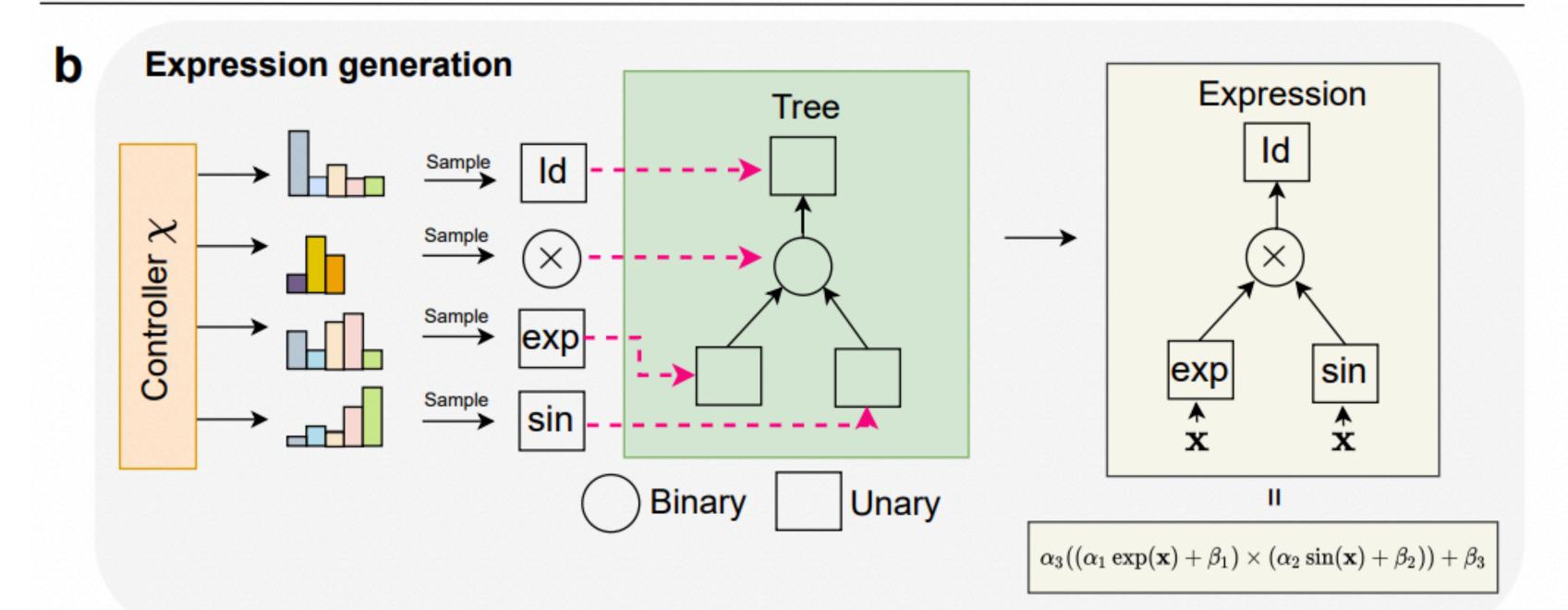


An expression tree as a sequence of node values by using its pre-order traversal, e.g., $2\sin(x) + 3$ and x + y

Computation Flow of FEX

Searching loop





Learning to Regress in FEX

- **State** at time t: The expression tree
- Action at time t:
- **Reward** at time t: $R(a_t) = 1/(1 + \mathcal{L}(u))$
- **Policy (controller):** $p(a | \theta)$ is the probability specified by a \bullet deep neural network

The operators, variables, and constants drawn from the policy

Numerical Comparison

ONN method:

- Neural networks with a ReLU²-activation function
- ResNet with depth 7 and width 50

OFEX method:

- Depth 3 binary tree
- Binary set $\mathbb{B} = \{+, -, \times\}$
- Unary set $\mathbb{U} = \{0, 1, \text{Id}, (\cdot)^2, (\cdot)^3, (\cdot)^4, \exp, \sin, \cos\}$

O Fex NN method:

- Apply FEX to obtain an estimated solution structure
- Design NN adaptively with this structure,
- e.g., $u(x) = exp(NN(x;\theta))$

Poisson Equation

• Boundary value problem:

• $\Omega = [-1,1]^d$

• True solution $u(x) = \frac{1}{2} \sum_{i=1}^{d} x_i^2$

• Stochastic optimization:

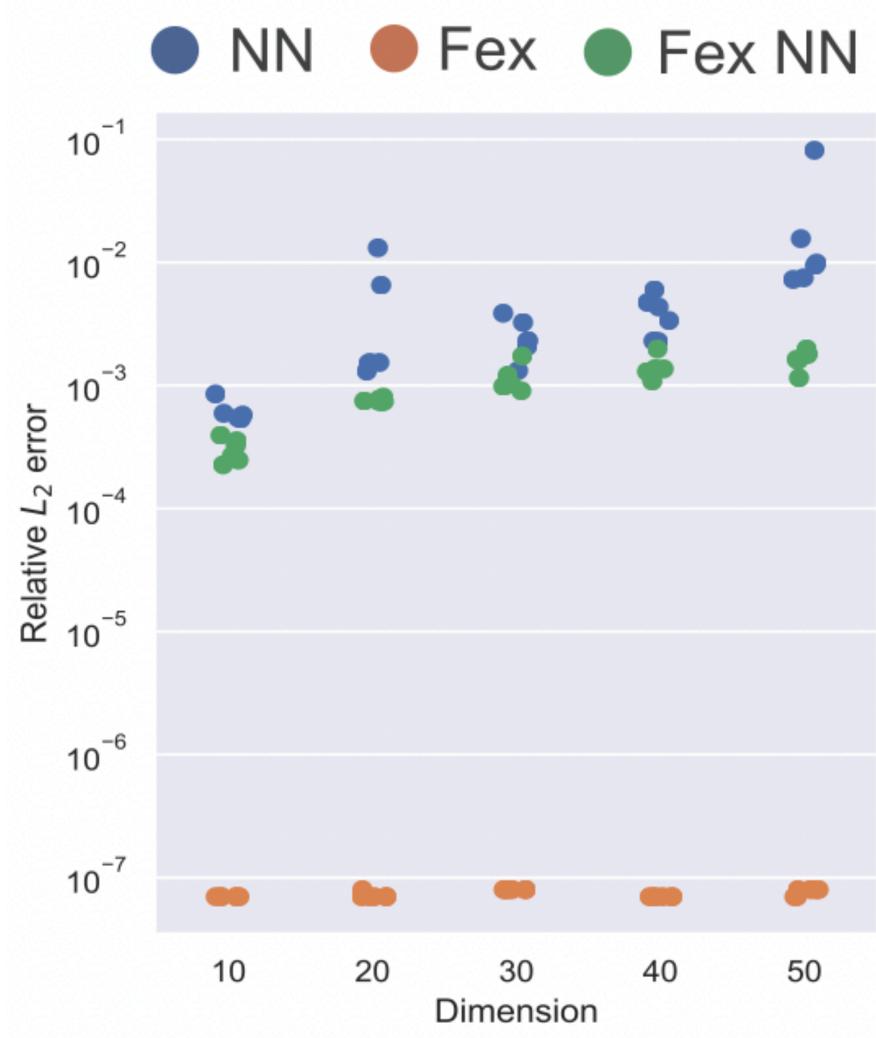
$$\min_{u \in \mathbb{S}_k} \mathscr{L}(u) := \min_{u \in \mathbb{S}_k} || - \Delta u(x)$$

with Monte Carlo discretization of high-dimensional integrals

- $-\Delta u = f$ for $x \in \Omega$
 - u = g for $x \in \partial \Omega$

 $x) - f(x)\|_{L^{2}(\Omega)}^{2} + \lambda \|u(x) - g(x)\|_{L^{2}(\partial\Omega)}^{2}$

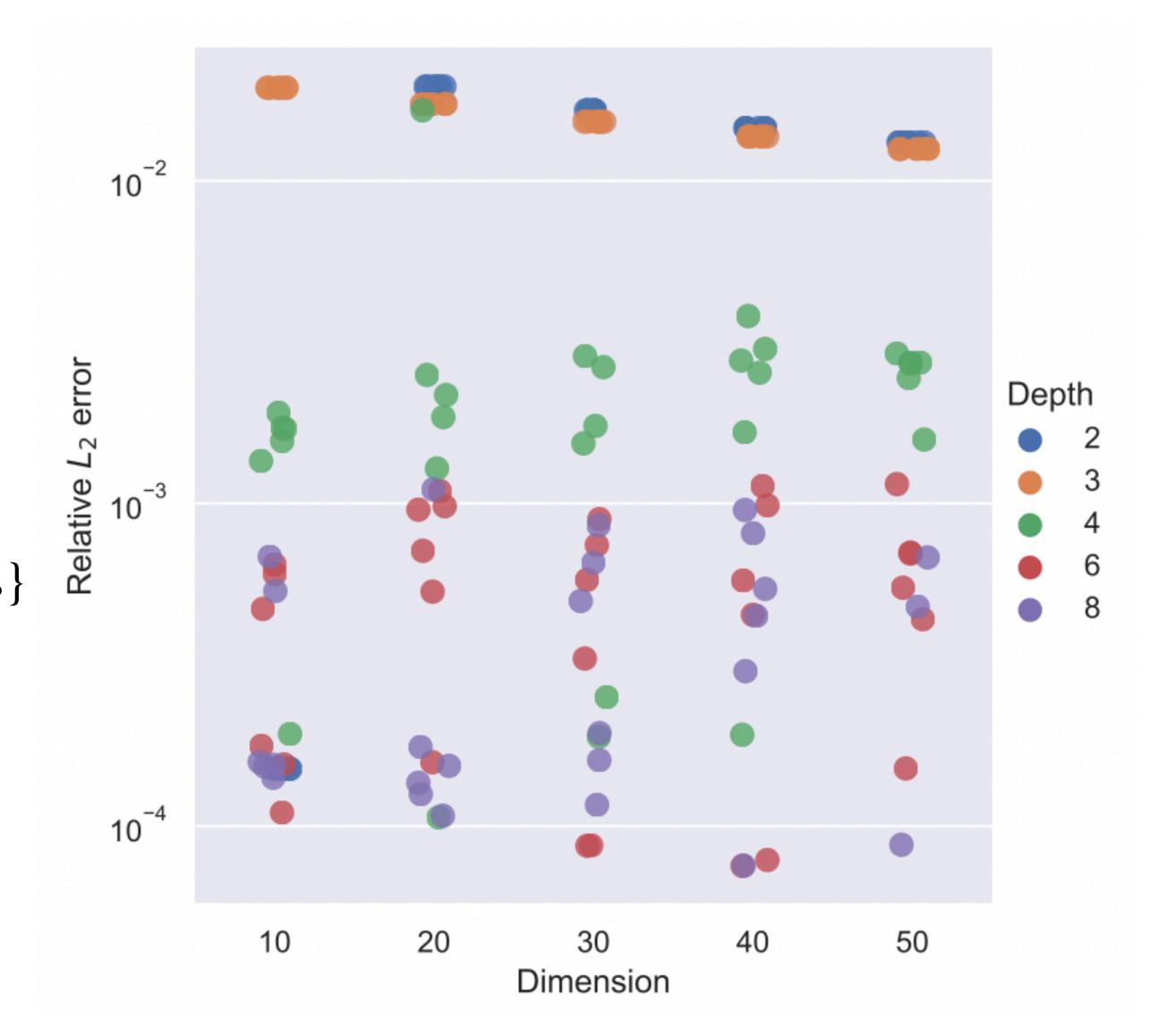
Poisson Equation



Poisson Equation

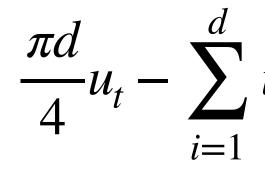
Convergence Test:

- True solution $u(x) = \frac{1}{2} \sum_{i=1}^{d} x_i^2$
- Binary set $\mathbb{B} = \{+, -, \times\}$
- Unary set $\mathbb{U} = \{0, 1, \text{Id}, (\cdot)^3, (\cdot)^4, \exp, \sin, \cos\}$
- No expression tree to exactly represent u(x)



Linear Conservation Law

• Consider



u(0,

- $T \times \Omega = [0,1] \times [-1,1]^d$
- True solution $u(t, x) = \sin(t + \frac{\pi}{4} \sum_{i=1}^{d} x_i)$
- Stochastic optimization:

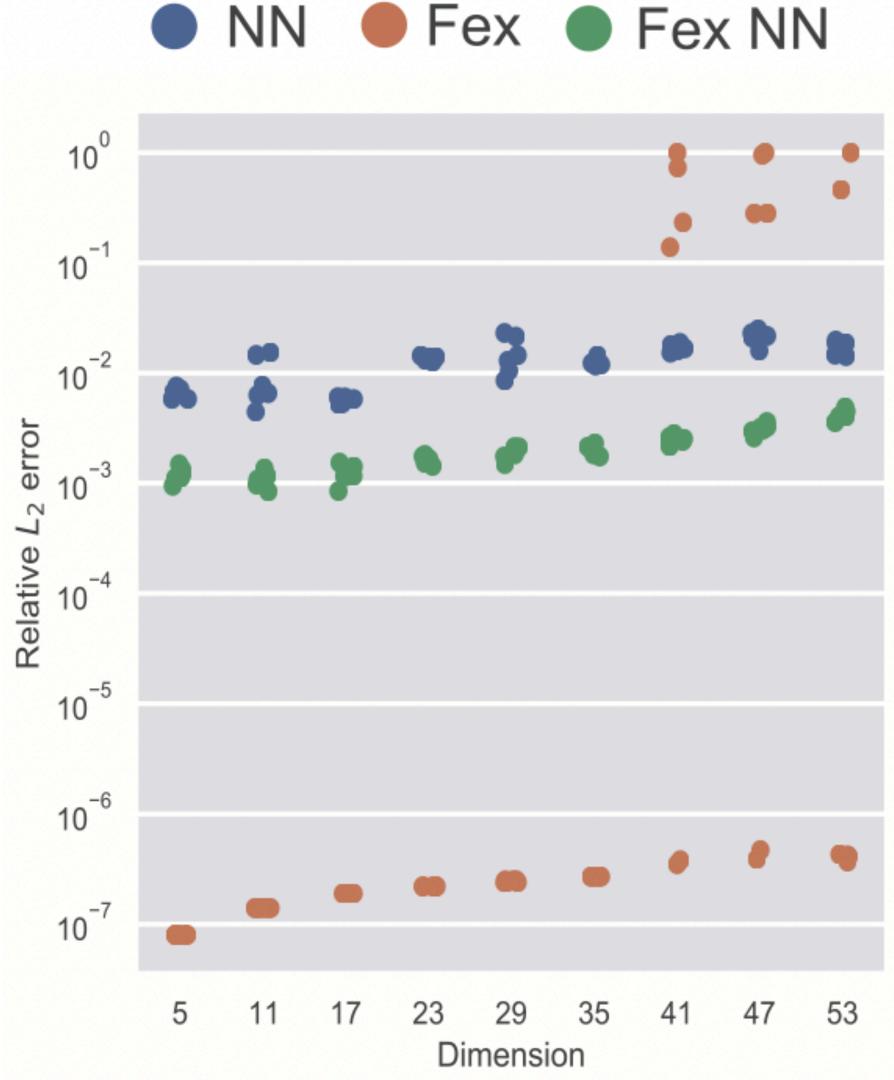
$$\min_{u \in \mathbb{S}_k} \mathscr{L}(u) := \min_{u \in \mathbb{S}_k} \|u_t - \sum_{i=1}^d u_{x_i}\|_{L^2(T \times \Omega)}^2 + \lambda \|u(0, x) - \sin(\frac{\pi}{4} \sum_{i=1}^d x_i)\|_{L^2(\Omega)}^2$$

with Monte Carlo discretization of high-dimensional integrals

$$u_{x_i} = 0$$
 for $x = (x_1, \dots, x_d) \in \Omega, t \in [0, 1]$

$$f(x) = \sin(\frac{\pi}{4}\sum_{i=1}^{d} x_i) \quad \text{for } x \in \Omega$$

Linear Conservation Law



Fex Fex NN

Nonlinear Schrodinger Equation

• Consider

$$-\Delta u + u^3 + Vu = 0 \quad \text{for } x \in \Omega$$

• $V(x) = -\frac{1}{9} \exp(\frac{2}{d} \sum_{i=1}^d \cos x_i) + \sum_{i=1}^d \left(\frac{\sin^2 x_i}{d^2} - \frac{\cos x_i}{d}\right) \text{ for } x = (x_1, \dots, x_d)$

• $\Omega = [-1,1]^d$

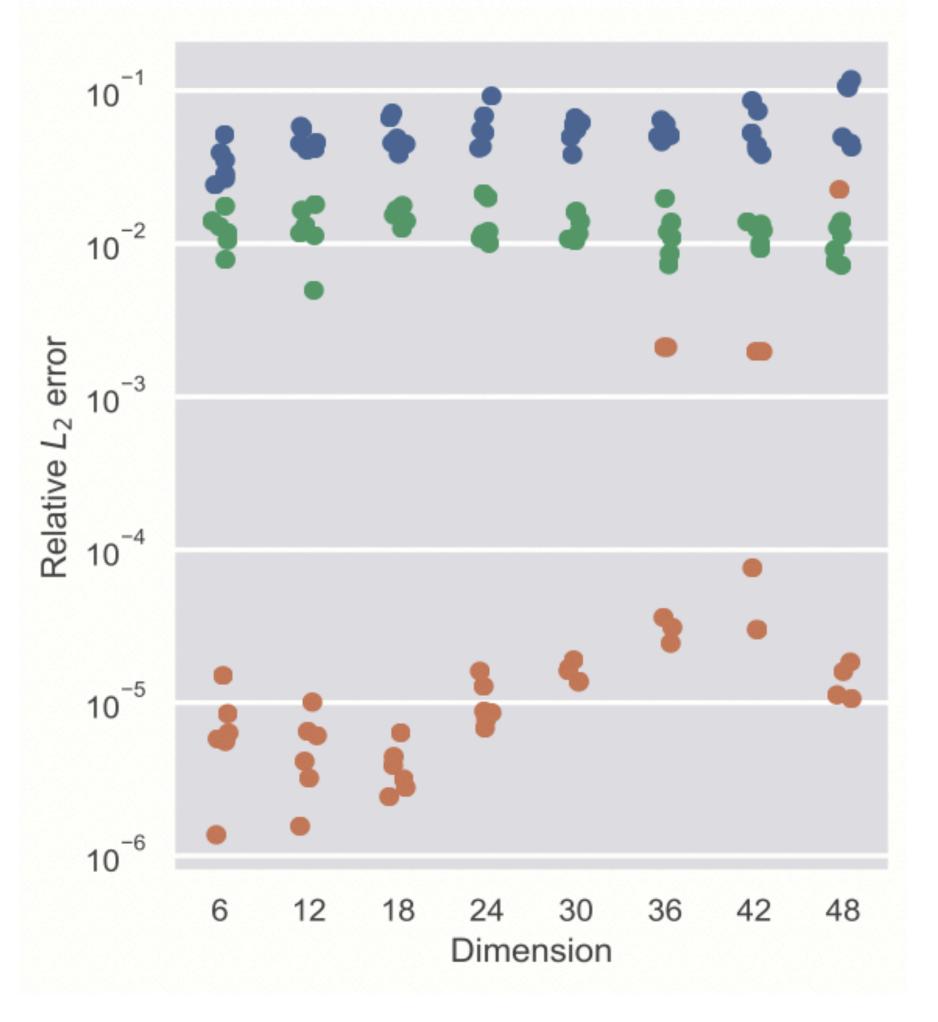
• True solution $u(x) = \exp(\frac{1}{d}\sum_{j=1}^{d} \cos(x_j))/3$

• Stochastic optimization:

$$\min_{u \in \mathbb{S}_k} \mathscr{L}(u) := \min_{u \in \mathbb{S}_k} \| -\Delta u + u^3 + Vu \|_{L_2(\Omega)}^2 / \|u\|_{L_2(\Omega)}^3$$

with Monte Carlo discretization of high-dimensional integrals

Nonlinear Schrodinger Equation



Eigenvalue Problem

Consider

- $\Omega = [-3,3]^d$ and $w = ||x||_2^2$
- The smallest eigenfunction is $u(x) = \exp(-2||x||_2^2)$
- Stochastic optimization (DeepRitz, Weinan E and Bing Yu, 2017):

$$\min_{u \in \mathbb{S}_k} \mathscr{L}(u) := \min_{u \in \mathbb{S}_k} \mathscr{I}(u) - u_k = \mathbb{S}_k$$

with Rayleigh quotient

$$\mathcal{J}(u) = \frac{\int_{\Omega} \| \mathbf{v} \|}{\mathcal{I}}$$

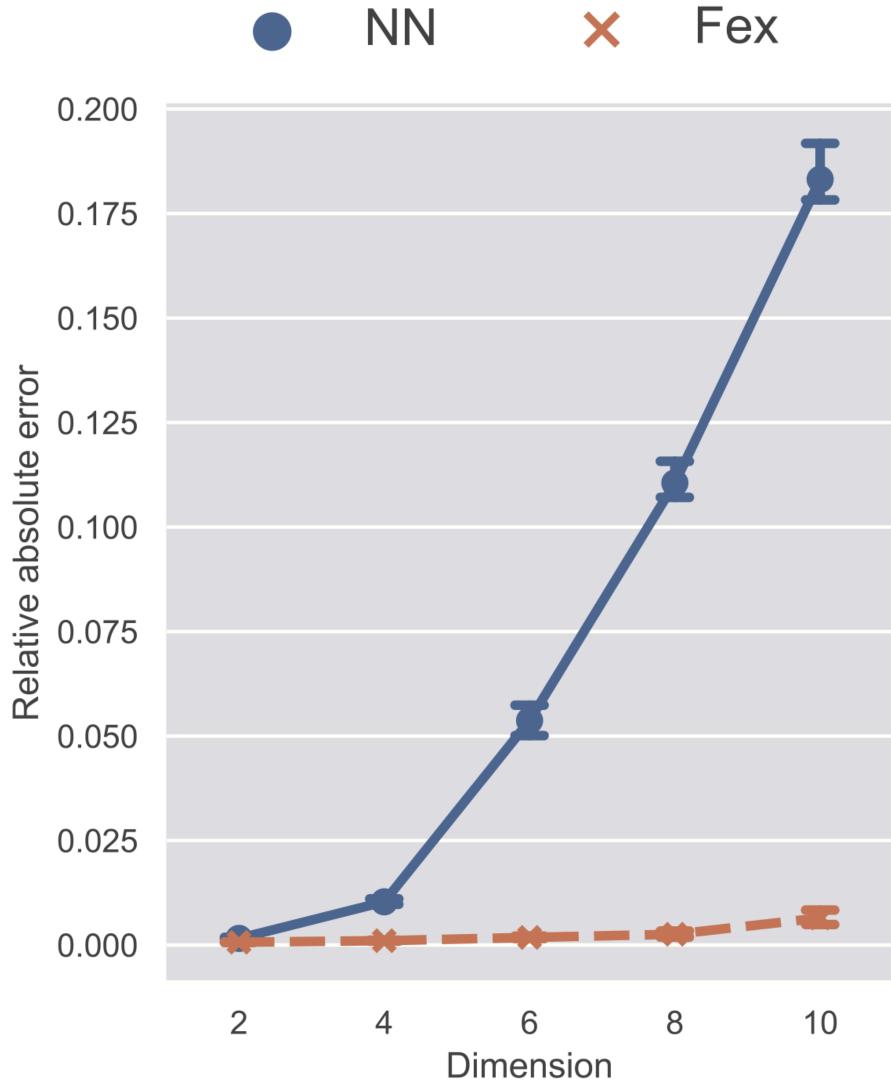
 $-\Delta u + w \cdot u = \gamma u, \quad x \in \Omega$

 $u = 0, \quad x \in \partial \Omega$

$$\binom{2}{2}$$

 $+ \lambda_1 \int_{\partial \Omega} u^2 dx + \lambda_2 \Big(\int_{\Omega} u^2 dx - 1 \Big)^2$

 $\nabla u\|_2^2 dx + \int_{\Omega} w \cdot u^2 dx$ $\int_{\Omega} u^2 dx$



Eigenvalue Problem

× Fex

Finite Expression Method Conclusion

- to arbitrary accuracy
- expressions to solve PDEs
- Advantage: PDE solver scalable in dimension with high accuracy
- Preprint: Liang and Y. <u>arXiv:2206.10121</u>

• **Theory:** $O(d^2)$ finite expressions approximate d-dimensional continuous functions

• Algorithm: reinforcement learning solve combinatorial optimization to identify

Acknowledgement

