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Introduction

▶ Let F : Rn → Rn be nonlinear.
▶ Everything we’ll discuss today is motivated by the problem

F(x) = 0
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Why?
▶ Nonlinear Integral Equations

Chandrasekhar H-equation

F(H)(µ) := H(µ)−
(

1 − ω

2

∫ 1

0

µH(ν) dν
µ+ ν

)−1
= 0.

▶ Partial Differential Equations
▶ The Wikipedia page titled “List of nonlinear partial differential equations" lists 103 PDEs.
▶ Many of these have an entire Wikipedia page of their own. For example:

Incompressible Navier-Stokes Minimal Surface Equation

∂tu + u · ∇u −∆u +∇p − g = 0 ∇ ·
(

Du/
√

1 + |Du|2
)

∇ · u = 0
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WhyRn?

Nonlinear PDE Discretize−→ Nonlinear function onRn
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Newton’s Method

▶ A popular choice because of it’s relative simplicity and strong local convergence results.
▶ The idea is to linearize F, and approximate a root x∗ by the root of the linearization.
▶ Suppose we have an approximate root xk. Then

F(x) ≈ F(xk) + F′(xk)(x − xk),

and we define xk+1 as the root of the linearization. That is,

xk+1 = xk − F′(xk)
−1F(xk). (1)
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Newton’s Method

▶ The strong local convergence property can be stated as follows:
If F : Rn → Rn is C1, with F′ Lipschitz, and F(x∗) = 0 with F′(x∗) invertible,

then there exists a neighborhood of x∗ such that xk → x∗ q-quadratically for any x0 in this
neighborhood, where{xk} is defined by (1).

Remark: Everything stated here can be generalized to Banach spaces. The celebrated
Newton-Kantorovich1 theorem is the analogue of the above result in this more general
setting.

1Ortega, J. M. (1968). The Newton-Kantorovich Theorem. The American Mathematical Monthly, 75(6), 658–660.
https://doi.org/10.2307/2313800 [Ort68]
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Newton isn’t always fast...

▶ The assumption that F′(x∗) is invertible is very important. Without it, we aren’t
guaranteed fast local convergence.

▶ In fact, if F′(x∗) is singular, the “best" we can hope for is2

▶ Here X is range of F′(x∗), and N is the nullspace.

2Decker, D. W., Keller, H. B., & Kelley, C. T. (1983). Convergence Rates for Newton’s Method at Singular Points.
SIAM Journal on Numerical Analysis, 20(2), 296–314. http://www.jstor.org/stable/2157219 [DKK83]
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Newton isn’t always fast...

The point is that when F′(x∗) is singular, Newton’s method will only converge linearly, and at
best the convergence rate will approach 1/2.

Recall that Newton’s method can be viewed as a fixed-point method, which is linearly
convergent in the singular case.

What we need is some method that accelerates linearly converging fixed point methods.
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Anderson Acceleration (AA)

(1965) Introduced by D.G. Anderson
(1980) A closely related method, DIIS or Pulay Mixing, is
introduced by Peter Pulay in Convergence acceleration of iterative
sequences. The case of SCF iteration.
(2009) Fang and Saad prove that AA is a type of multisecant
method in Two classes of multisecant methods for nonlinear
acceleration.
(2011) Walker and Ni show that if F is linear, then AA is (in a
sense) equivalent to the well-known GMRES method. Anderson
Acceleration for Fixed-Point Iterations.
(2015) Toth and Kelley prove that AA converges in Convergence
analysis for Anderson acceleration.

(2020) Evans, Pollock, Rebholz, and Xiao provide A Proof That

Anderson Acceleration Improves the Convergence Rate in Linearly

Converging Fixed-Point Methods (But Not in Those Converging

Quadratically).
Figure: Donald G. Anderson. 1965. Iterative Procedures for Nonlinear Integral
Equations.
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So What is AA?

It’s an extrapolation scheme that takes the previous m (called the algorithmic depth) iterates,
and constructs a new iterate as follows.
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So What is AA?

It’s an extrapolation scheme that takes the previous m (called the algorithmic depth) iterates,
and constructs a new iterate as follows.

Suppose we seek a fixed poit of g, and we have computed m + 1 iterates {xk, xk−1, ..., xk−m}
where xi = g(xi−1). Let wk+1 = g(xk)− xk,

Ek =
(
(xk − xk−1) · · · (xk−m+1 − xk−m)

)
, Fk =

(
(wk+1−xk−1) · · · (xk−m+2−xk−m+1)

)
,

and γk+1 = argminγ∈Rn ∥wk+1 − Fkγ∥2. Then

xAA
k+1 = xk + βwk+1 − (Ek + βFk)γk+1. (2)

Hereβ ∈ (0, 1).
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What is AA?

Our new results only consider depth m = 1 andβ = 1, in which case

xAA
k+1 = xk + wk+1 − (xk − xk−1 + wk+1 − wk)γk+1.

To conclude the AA section, let’s go the board to see a “derivation" of AA (á la Hans De Sterk3).

3Professor of Computational and Applied Math at University of Waterloo, currently the Chair. Very nice guy.
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Anderson and Newton and Newton-Anderson

Now all the pieces are in place to study Anderson accelerated Newton’s method, or
Newton-Anderson (NA).

For the remainder of the talk, the only fixed-point scheme we care about is Newton’s method.
Therefore g(x) = x − F′(x)−1F(x), and w(x) = −F′(x)−1F(x). If x = xk, we write
w(xk) = wk+1.
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Nonsingular Newton-Anderson
▶ In 2021, Dr. Pollock and her collaborator Leo Rebholz4 published Anderson acceleration for

contractive and noncontractive operators.

▶ A key result in this and their (and collaborators’) 2020 paper is that whether or not
Anderson actually accelerates at step k + 1 is determined by

θk+1 :=
∥wk+1 − γk+1(wk+1 − wk)∥2

∥wk+1∥2
.

▶ Loosely speaking,

θk+1 << 1 =⇒ acceleration
θk+1 ≈ 1 =⇒ no acceleration

4Clemson Univeristy, also very nice guy.
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Singular Newton-Anderson

▶ Recall that the problem F(x) = 0 with solution x∗ is singular if F′(x∗) is singular.

▶ Newton’s method only converged linearly in this case.
▶ Anderson likes to accelerate linearly converging things.
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Singular Newton-Anderson
It has been observed numerically that Newton-Anderson can greatly improve convergence in
singular problems.

Figure: Pollock, Schwarz, Benchmarking results for the Newton-Anderson method. 2020.[PS20].
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It works...but why?

Our recent work5 answers the questions

1. What’s the mechanism behind singular NA acceleration?

−→ Within the region of invertibility, it’s actually θk+1!

2. Do the NA iterates remain well-defined and converge to x∗?

−→ Sort of. We can prove convergence not of NA itself, but of a safeguarded version which we’ve
called γ-safeguarded NA ( γNA(r) ).

5M. Dallas and S. Pollock, Newton-Anderson at Singular Points, In press, 2023. DOI: 10.48550/arXiv.2207.12334
To appear in The International Journal of Numerical Analysis and Modeling.
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Regions of Invertibility

x∗
N

x∗

Figure: Left: Domain of convergence for Newton’s method when f ′(x∗) is nonsingular. Right: Example
domain of convergence when f ′(x∗) is singular. Note that these are also domains of invertibility for f ′.
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Analysis Strategy
▶ The error ek = xk − x∗ may be decomposed into

it’s range and null space components.

▶ Therefore, the NA (depth m = 1) error is
determined by how the dominant contributions
in ek and ek−1.

▶ eNA
k+1 =

1
2

(
PNek

)α
+

(
TkPRek

)α
+ qk

k−1.

Where xαk = (1 − γk+1)xk + γk+1xk−1, and
qk

k−1 = O(|γk+1|, ∥ek∥2, ∥ek−1∥2).

Figure: The three regions of interest in analyzing a
Newton-Anderson step. The blue region is the null-dominant
region, the red region is range-dominant, and the magenta
region is not strongly range or null dominant. For convergence,
we’re most interested in region I. Note that we’ve assumed
x∗ = 0 for simplicity.
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Compatibility

In [DP23], we define the notion of compatibility. The definition essentially says that if an NA
step is compatible when it behaves like a nonsingular NA step.

The point is that if xk+1 compatible,

θk+1 small =⇒ ∥PNek+1∥ small

21 / 37
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Compatibility

Thus far we have
1. a region containing x∗ where F′(x) is invertible for all x in this region, and
2. a way to quantify how well Anderson accelerates a Newton step.

How are (1) and (2) related?

22 / 37
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Compatibility

Paraphrasing Lemma 5.1 in [DP23], we have

If xk and xk−1 are close to N, then xNA
k+1 is compatible.

It can then be shown that

∥PNek+1∥ ≤ κθk+1(1/2)∥PNek∥, κ < 1.

Compare with the standard Newton bound near N
and x∗:

∥PNeNewt
k+1 ∥ ≤ c(1/2)∥PNeNewt

k ∥,

with c < 2. Note that θk+1 ≤ 1.
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Other Compatibility Conditions
▶ There are compatibility conditions for other arrangements of xk and xk−1, but they can be

stringent.

24 / 37
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Other Compatibility Conditions

The great things about pairs xk and xk−1 near N is that they are automatically compatible.

25 / 37
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Incompatible steps

Incompatible steps can still be accelerated, but there’s no guarantee.

The story here is that in the worst case, ∥PNek+1∥ decreases very little, while ∥PRek+1∥ is still
quadratic.

This causes the iterates to cluster around N, which leads to compatibility.

26 / 37
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γ-Safeguarding

To prove convergence, we need to ensure that the iterates remain within the region of
invertibility. To achieve this, we created the γ-safeguarding algorithm.

27 / 37
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Local Convergence

▶ We’ll denote γ-safeguarded NA as γNa(r), where r is a parameter set by the user.
▶ Then, paraphrasing Theorem 6.1 in [DP23], we have

For x0 sufficiently close to N and x∗, and x1 = x0 + w1,γNA(r) remains well-defined and
converges to x∗ with

∥PRek+1∥ ≤ c4 max{|1 − λk+1γk+1| ∥ek∥2, |λk+1γk+1| ∥ek−1∥2}
∥PNek+1∥ < κθλk+1∥PNek∥.
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Examples

Figure: Top: Results when applied to two nonsingular problems. Bottom: Results when applied to
singular problems.
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Towards Adaptive Safeguarding

▶ γNA(r) is nice theoretically because it provides a convergence proof.
▶ Having to choose r, however, isn’t ideal from an implementation perspective.

▶ To improve the situation, we propose an adaptive γ-safeguarded NA, which we denote by
γNA(rk).

▶ Rather than a fixed r ∈ (0, 1), we could take

rk = min

(
∥wk+1∥
∥wk∥

, 0.9
)

30 / 37
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Why ∥wk+1∥
∥wk∥ ?

A good choice of rk should satisfy the following
1. rk << 1 if ∥PNek+1∥/∥PNek∥ << 1

2. rk ≈ 1 if ∥PNek+1∥/∥PNek∥ ≈ 1
3. If F′(x∗) is not singular, then we want rk → 0 as k → ∞.
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Why ∥wk+1∥
∥wk∥ ?

In other words, we want
rk ≈ ∥PNek+1∥/∥PNek∥,

and in the region of invertibility,

∥wk+1∥/∥wk∥ ≈ ∥PNek+1∥/∥PNek∥.
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Applications: Bifurcation Theory

▶ Consider a parameter dependent nonlinear equation:

F(x;µ) = 0.

This could come from discretizing a parameter-dependent PDE such as

−∆u +∇p = − 1
η
(u · ∇u + ut)

∇ · u = 0.

▶ If (x̄, µ̄) is a solution, and Fx(x̄; µ̄) is invertible, then there’s a neighborhood of (x̄, µ̄) such
that there’s a unique solution curve x(µ) through (x̄, µ̄).

▶ Bifurcations occur atµ∗ when there is not a unique solution in a neighborhood ofµ∗.

33 / 37
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Applications: Bifurcation Theory

If there’s not a unique solution nearµ∗, then Fx(x∗;µ∗)must be singular.
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Example: Rayleigh-Benard Convection
Models the flow of a fluid whose motion is produced by buoyancy forces. One system of
equations modeling this scenario is the system of Boussinesq equations6:

∇ · u = 0
u · ∇u +∇p − Pr∇2u − PrRaTŷ = 0
u · ∇T −∇2T = 0

If we fix Pr, then the parameterµ is Ra, the
Rayleigh number.

Figure: Taken from [GLRW12]

6See Tritton, Physical Fluid Dynamics, 1988. 35 / 37



Introduction Singular Problems Anderson Acc Anderson Acc Newt Ongoing Work

Rayleigh-Benard Convection

Increasing Ra−→

36 / 37
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What we have and haven’t said

▶ What we’ve shown:
▶ Under certain conditions, Newton-Anderson accelerates Newton iterates in the singular case

by the same mechanism seen in the nonsingular case.
▶ With γ-safeguarding, Newton-Anderson converges locally, and in general faster than

Newton (never worse).

▶ Open questions

▶ Do these results extend to dimN > 1 case?
▶ What about for depth m > 1?
▶ How small can θk+1 be?
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Thank you!

My support group
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