Applications and Solutions of the Vertex Seperator Problem (VSP)

Ovidiu Nechita onechita@ufl.edu Introduction

Multilevel Framework Conve 00 0000

Converting to a QP

Solving the Discrete Problem

Solving the Continuous Problem

Next Steps & Conclusion

Vertex Seperator Problem (VSP)¹

- We are given a connected graph, where each node *i* has a weight w_i and a cost c_i
- Partition a given graph into 3 parts
 A, B, C so that no edges go from A to
 B
- We seek to minimize the cost of the separator
- Don't have A or B too big. l_A and u_B are upper and lower bounds on the weight of A. And l_B and u_B are upper and lower bounds on the weight of B.

Figure: In the graph above, group C is a separator of ${\cal A}$ and ${\cal B}$

¹ Fuda Ma, Yang Wang, and Jin-Kao Hao. "Path relinking for the vertex separator problem". In: <u>Expert Systems with Applications</u> 82 (Mar. 2017). DOI: 10.1016/j.eswa.2017.03.064.

Figure: In this graph, the set of vertices in the middle is a vertex separator. Removing this set breaks the graph into two parts A and B that are not connected by an edge. If we added, the red edge to the graph, the set of vertices in the middle would no longer be a vertex separator.²

² Boaz Barak and David Steurer. <u>Arora-Rao-Vazirani approximation for expansion</u>. URL: https://www.sumofsquares.org/public/lecarv.html.

Introduction
OOMultilevel Framework
ooConverting to a QP
oocoSolving the Discrete Problem
oocoSolving the Continuous Problem
oocoNext Steps & Conclusion
ooco

Applications of the VSP

- Sparse Matrix Factorization³
- Parallel and distributed computing the VSP can be used for hypergraph partitioning⁴
- Cyber security & Telecommunication networks a separator determines network brittleness⁵
- Bioinformatics and computational biology⁶
- Many graph algorithms, especially those based on divide-and-conquer⁷

³ XIE Xian-fen GU Wan-rong HE Yi-chen MAO Yi-jun. "Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation". In: <u>Computer Science</u> 49.6A, 272 (2022), p. 272. DOI: 10.11896/jsjkx.210600159. URL: https: //www.jsjkx.com/EN/abstract/article_20814.shtml.

⁴ Enver Kayaaslan et al. "Partitioning Hypergraphs in Scientific Computing Applications through Vertex Separators on Graphs". In: <u>SIAM Journal on Scientific Computing</u> 34.2 (2012), A970–A992. DOI: 10.1137/100810022. eprint: https://doi.org/10.1137/100810022. URL: https://doi.org/10.1137/100810022.

⁵ Charles E. Leiserson. "Area-efficient graph layouts". In: <u>21st Annual Symposium on Foundations of Computer Science (sfcs 1980)</u>. 1980, pp. 270–281. DOI: 10.1109/SFCS.1980.13.

⁶ Bin Fu and Zhixiang Chen. "Sublinear Time Width-Bounded Separators and Their Application to the Protein Side-Chain Packing Problem". In: Algorithmic Aspects in Information and Management. Ed. by Siu-Wing Cheng and Chung Keung Poon. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 149–160.

⁷ Cem Evrendilek. "Vertex separators for partitioning a graph". In: Sensors 8.2 (2008), pp. 635–657.

Introduction	Multilevel Framework	Converting to a QP	Solving the Discrete Problem	Solving the Continuous Problem	Next Steps & Conclusion
000	•0	00000	000	00000	000

Multilevel Framework

⁸ Tengfei Ma and Jie Chen. "Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport". In: CoRR abs/1912.11176 (2019). arXiv: 1912.11176. URL: http://arxiv.org/abs/1912.11176.

Introduction

0.

Multilevel Framework Converting to a QP Solving the Discrete Problem

Solving the Continuous Problem

Next Steps & Conclusion

Solving One Level Of Coarsening

Figure: An illustration of how one level of coarsening is solved.

Introduction Multilevel Framework Solving the Discrete Problem

Solving the Continuous Problem

UА

Next Steps & Conclusion

Initial Formulation

- For any $U \subseteq V$, define:
 - $\blacktriangleright C(U) = \sum_{v \in U} c_v$
 - $\blacktriangleright W(U) = \sum_{v \in U} w_v$
- Formulation:

$$\begin{array}{ll} \min_{\mathcal{A},\mathcal{B},S} \mathcal{C}(S) & \max_{\mathcal{A},\mathcal{B}} \mathcal{C}(\mathcal{A} \cup \mathcal{B}) \\ \text{s.t. } \mathcal{A} \cap \mathcal{B} = \emptyset & \Longleftrightarrow & \text{s.t. } \mathcal{A} \cap \mathcal{B} = \emptyset \\ (\mathcal{A} \times \mathcal{B}) \cap \mathcal{E} = \emptyset & (\mathcal{A} \times \mathcal{B}) \cap \mathcal{E} = \emptyset \\ \ell_{\mathcal{A}} \leq \mathcal{W}(\mathcal{A}) \leq u_{\mathcal{A}} & \ell_{\mathcal{A}} \leq \mathcal{W}(\mathcal{A}) \leq u_{\mathcal{A}} \\ \ell_{\mathcal{B}} \leq \mathcal{W}(\mathcal{B}) \leq u_{\mathcal{B}} & \ell_{\mathcal{B}} \leq \mathcal{W}(\mathcal{B}) \leq u_{\mathcal{B}} \\ S = V - (\mathcal{A} \cup \mathcal{B}) \end{array}$$

Introduction
00Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
000Solving the Continuous Problem
0000Next Steps & Conclusion
000

Notation

• With the subset A, we associate the binary vectors x, y:

$$x_i = \begin{cases} 1 & \text{if } i \in \mathcal{A} \\ 0 & \text{if } i \notin \mathcal{A} \end{cases} \qquad y_i = \begin{cases} 1 & \text{if } i \in \mathcal{B} \\ 0 & \text{if } i \notin \mathcal{B} \end{cases}$$

- Let A be the adjacency matrix.
- ▶ The condition $\mathcal{A} \cap \mathcal{B} = \emptyset$ is captured by the equation $x^T y = 0$
- The condition $(\mathcal{A} \times \mathcal{B}) \cap E = \emptyset$ is captured by $x^T A y = 0$.
- Adding them, we get $x^T(A+I)y = 0$.

Introduction Multilevel Framework Converti

Converting to a QP

Solving the Discrete Problem

Solving the Continuous Problem

Next Steps & Conclusion

Binary Vector Formulation

▶ Let
$$\mathbb{B} = \{0, 1\}.$$

$$\max_{\mathcal{A},\mathcal{B}} C(\mathcal{A} \cup \mathcal{B}) \qquad \max c^{T}(x+y)$$

s.t. $\mathcal{A} \cap \mathcal{B} = \emptyset \qquad \Longleftrightarrow \qquad \text{s.t. } x^{T}(\mathcal{A}+I)y = 0$
 $(\mathcal{A} \times \mathcal{B}) \cap \mathcal{E} = \emptyset \qquad \qquad \ell_{\mathcal{A}} \leq w^{T}x \leq u_{\mathcal{A}}$
 $\ell_{\mathcal{A}} \leq \mathcal{W}(\mathcal{A}) \leq u_{\mathcal{A}} \qquad \qquad \ell_{\mathcal{B}} \leq w^{T}y \leq u_{\mathcal{B}}$
 $\ell_{\mathcal{B}} \leq \mathcal{W}(\mathcal{B}) \leq u_{\mathcal{B}} \qquad \qquad x, y \in \mathbb{B}^{n}$

The constraint x^T(A + I)y = 0 is somewhat complex and difficult to satisfy.
We bring it into the objective, with a penalty γ > 0.

Introduction
000Multilevel Framework
00Converting to a QP
00000Solving the Discrete Problem
000Solving the Continuous Problem
00000Next Steps & Conclusion
000

Relaxing a Constraint

$$\begin{array}{ll} \max c^{T}(x+y) & \max c^{T}(x+y) - \gamma x^{T}(A+I)y \\ \text{s.t. } x^{T}(A+I)y = 0 & \Longleftrightarrow & \text{s.t. } \ell_{\mathcal{A}} \leq w^{T}x \leq u_{\mathcal{A}} \\ \ell_{\mathcal{A}} \leq w^{T}x \leq u_{\mathcal{A}} & \ell_{\mathcal{B}} \leq w^{T}y \leq u_{\mathcal{B}} \\ \ell_{\mathcal{B}} \leq w^{T}y \leq u_{\mathcal{B}} & x, y \in \mathbb{B}^{n} \\ x, y \in \mathbb{B}^{n} \end{array}$$

Proposition: If w ≥ 1 and γ ≥ max{c_i : i ∈ V}, then for any feasible point (x, y) of the relaxed problem satisfying f(x, y) ≥ γ(ℓ_A + ℓ_B), there is a feasible point (x̄, ȳ) of the strict problem which satisfies

$$c^{T}(\bar{x}+\bar{y}) \geq c^{T}(x+y) - \gamma x^{T}(A+I).$$

▶ In practice, $\ell_A = \ell_B = 1$ is common, so $f(x, y) \ge \gamma(\ell_A + \ell_B)$ is easy to satisfy.

Introduction
000Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
000Solving the Continuous Problem
0000Next Steps & Conclusion
000

Relaxing the Binary Requirements

$$\begin{array}{ll} \max \ c^{T}(x+y) - \gamma x^{T}(A+I)y & \max \ c^{T}(x+y) - \gamma x^{T}(A+I)y \\ \text{s.t.} \ \ell_{\mathcal{A}} \leq w^{T}x \leq u_{\mathcal{A}} & \Longleftrightarrow & \text{s.t.} \ \ell_{\mathcal{A}} \leq w^{T}x \leq u_{\mathcal{A}} \\ \ell_{\mathcal{B}} \leq w^{T}y \leq u_{\mathcal{B}} & \ell_{\mathcal{B}} \leq w^{T}y \leq u_{\mathcal{B}} \\ x, y \in \mathbb{B}^{n} & 0 \leq x, y \leq 1 \end{array}$$

Proposition: If the original VSP problem is feasible, then the continuous problem has a mostly binary solution. (i.e. at most one component in each of x, y is fractional)⁹

⁹ William W. Hager, James T. Hungerford, and Ilya Safro. "A multilevel bilinear programming algorithm for the vertex separator problem". In: <u>Computational Optimization and Applications</u> 69.1 (2018), pp. 189–223. ISSN: 1573-2894. DOI: 10.1007/s10589-017-9945-2. URL: https://doi.org/10.1007/s10589-017-9945-2.

Introduction
00Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
0000Solving the Continuous Problem
0000Next Steps & Conclusion
000

Flips

min
$$\gamma x^T (A + I)y - c^T (x + y)$$

s.t. $w^T x \le u_A$
 $w^T y \le u_B$
 $0 \le x, y \le 1$

- Single Flips: Flip a single entry in x or y from 0 to 1 (up-flip) or 1 to 0 (down-flip).
- Mixed Flips: Simultaneous up-flip in a vector and down-flip in the other.

Figure: An illustration of the possible flips that can be selected.

Introduction
00Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
000Solving the Continuous Problem
0000Next Steps & Conclusion
000

Example Flips

How do we find the best possible flip?

luction Multilevel Framework Convert

Converting to a QP

Solving the Discrete Problem

Solving the Continuous Problem

Next Steps & Conclusion

Variation of Konno's Mountain Climbing Algorithm¹⁰

$$\min_{x,y} f(x,y) \quad s.t. \quad x \in P_1, y \in P_2$$

Algorithm Modified Mountain Climbing Algorithm

Data: A feasible point (x, y) while (No more improvement in objective possible) do $x^* \leftarrow \operatorname{argmin}\{f(x, y) : x \in P_1\}$ $y^* \leftarrow \operatorname{argmin}\{f(x, y) : y \in P_2\}$ Find the minimum of $\{f(x^*, y), f(x, y^*), f(x^*, y^*)\}$ Update (x, y) to either $(x^*, y), (x, y^*)$, or (x^*, y^*) accordingly end

¹⁰ Hiroshi Konno. "A cutting plane algorithm for solving bilinear programs". In: <u>Mathematical Programming</u> 11.1 (1976), pp. 14–27. ISSN: 1436-4646. DOI: 10.1007/BF01580367. URL: https://doi.org/10.1007/BF01580367.

Introduction	Multilevel Framework	Converting to a QP	Solving the Discrete Problem	Solving the Continuous Problem
000	00	00000	000	0000

Next Steps & Conclusion

Mountain Climbing Applied to VSP

$$\begin{array}{l} \min \ \gamma x^{T}(A+I)y - c^{T}(x+y) \\ \text{s.t.} \quad w^{T}x \leq u_{\mathcal{A}} \\ & w^{T}y \leq u_{\mathcal{B}} \\ & 0 \leq x, y \leq 1 \end{array}$$

Constraints are decoupled, so we apply Mountain Climbing
Objective is linear in x

$$\min \gamma x^{T} (A+I)y - c^{T} (x+y) \qquad \min d^{T} x \\ \text{s.t. } w^{T} x \le u_{\mathcal{A}} \qquad \Longleftrightarrow \qquad \text{s.t. } w^{T} x \le u_{\mathcal{A}} \\ 0 \le x \le 1 \qquad \qquad 0 \le x \le 1$$

Introduction
00Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
000Solving the Continuous Problem
000Next Steps & Conclusion
000

Solving the LP

$$\begin{array}{l} \min \ d^T x \\ \text{s.t.} \quad w^T x \leq u_{\mathcal{A}} \\ 0 \leq x \leq 1 \end{array}$$

► Partial Lagrangian relaxation: for
$$0 \le x \le 1$$
, $\lambda \ge 0$,
 $L(x,\lambda) = d^T x + \lambda (w^T x - u_A) = (d + \lambda w)^T x - \lambda u_A$

▶ Dual function: for $\lambda \ge 0$

$$L(\lambda) = \min_{0 \le x \le 1} (d + \lambda w)^T x - \lambda u_{\mathcal{A}}$$

Introduction
000Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
000Solving the Continuous Problem
0000Next Steps & Conclusion
000

Finding the Dual

► Dual function: for
$$\lambda \ge 0$$
, $L(\lambda) = \min_{0 \le x \le 1} (d + \lambda w)^T x - \lambda u_A$

• A minimizer x^* is given by

$$x_i^* = \begin{cases} 1 & \text{if } d_i + \lambda w_i < 0\\ 0 & \text{if } d_i + \lambda w_i > 0\\ \text{free } \text{if } d_i + \lambda w_i = 0 \end{cases}$$

$$L(\lambda) = \sum_{i: d_i + \lambda w_i < 0} (d_i + \lambda w_i) - \lambda u_{\mathcal{A}}$$

 Introduction
 Multilevel Framework
 Converting to a QP
 Solving the Discrete Problem

 000
 00
 00000
 000

Solving the Continuous Problem

Next Steps & Conclusion

Solving the Dual

$$\mathcal{L}(\lambda) = \sum_{i: d_i + \lambda w_i < 0} (d_i + \lambda w_i) - \lambda u_{\mathcal{A}}$$

The dual is a continuous, piecewise linear, concave function
 The points of non-differentiability occur at λ = -d_i/m_i

Figure: A Graph of the Dual Function

Introduction
00Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
000Solving the Continuous Problem
0000Next Steps & Conclusion
000

Next Steps & Conclusion

The Flips and Mountain Climbing procedures have a very efficient implementation, and initial results suggest this algorithm is very fast.

▶ However, the algorithm does not yet produce very good separators.

An extensive computational comparative analysis is needed to compare the algorithm's performance against state of the art algorithms for solving the VSP. Introduction
000Multilevel Framework
00Converting to a QP
0000Solving the Discrete Problem
000Solving the Continuous Problem
00000Next Steps & Conclusion
0000

Next Steps & Conclusion Continued

 \blacktriangleright One issue which may contribute to the low-quality separators is that a large γ in the objective

$$\min \gamma x^T (A+I) y - c^T (x+y)$$

heavily penalizes steps which violate the constraint $x^T(A+I)y$. This penalty may be keeping the algorithm from exploring other regions of the solution space which may have more favorable separators.

Thus, a possible direction for research is reducing \(\gamma\) at key moments in the algorithm in order to allow the exploration of yet-unknown regions of the solution space.

Introduction 000 Multilevel Framework Converting to a QP

P Solving the Discrete Problem

Solving the Continuous Problem

Next Steps & Conclusion

Questions

Thank You!