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Vertex Seperator Problem (VSP)1

▶ We are given a connected graph,
where each node i has a weight wi

and a cost ci

▶ Partition a given graph into 3 parts
A,B,C so that no edges go from A to
B

▶ We seek to minimize the cost of the
separator

▶ Don’t have A or B too big. ℓA and uB
are upper and lower bounds on the
weight of A. And ℓB and uB are upper
and lower bounds on the weight of B.

Figure: In the graph above, group C
is a separator of A and B

1 Fuda Ma, Yang Wang, and Jin-Kao Hao. “Path relinking for the vertex separator problem”. In: Expert Systems with Applications 82 (Mar.
2017). doi: 10.1016/j.eswa.2017.03.064.
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VSP Example

Figure: In this graph, the set of vertices in the middle is a vertex separator. Removing this set
breaks the graph into two parts A and B that are not connected by an edge. If we added, the
red edge to the graph, the set of vertices in the middle would no longer be a vertex separator.2

2 Boaz Barak and David Steurer. Arora–Rao–Vazirani approximation for expansion. url: https://www.sumofsquares.org/public/lec-

arv.html. 3 / 22
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Applications of the VSP
▶ Sparse Matrix Factorization3

▶ Parallel and distributed computing - the VSP can be used for hypergraph
partitioning4

▶ Cyber security & Telecommunication networks - a separator determines network
brittleness5

▶ Bioinformatics and computational biology6

▶ Many graph algorithms, especially those based on divide-and-conquer7

3 XIE Xian-fen GU Wan-rong HE Yi-chen MAO Yi-jun. “Matrix Transformation and Factorization Based on Graph Partitioning by Vertex
Separator for Recommendation”. In: Computer Science 49.6A, 272 (2022), p. 272. doi: 10 . 11896 / jsjkx . 210600159. url: https :

//www.jsjkx.com/EN/abstract/article_20814.shtml.
4 Enver Kayaaslan et al. “Partitioning Hypergraphs in Scientific Computing Applications through Vertex Separators on Graphs”. In:
SIAM Journal on Scientific Computing 34.2 (2012), A970–A992. doi: 10.1137/100810022. eprint: https://doi.org/10.1137/100810022.
url: https://doi.org/10.1137/100810022.

5 Charles E. Leiserson. “Area-efficient graph layouts”. In: 21st Annual Symposium on Foundations of Computer Science (sfcs 1980). 1980,
pp. 270–281. doi: 10.1109/SFCS.1980.13.

6 Bin Fu and Zhixiang Chen. “Sublinear Time Width-Bounded Separators and Their Application to the Protein Side-Chain Packing Problem”.
In: Algorithmic Aspects in Information and Management. Ed. by Siu-Wing Cheng and Chung Keung Poon. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 149–160.

7 Cem Evrendilek. “Vertex separators for partitioning a graph”. In: Sensors 8.2 (2008), pp. 635–657.
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Multilevel Framework

Figure: An illustration of the graph coarsening procedure8

8 Tengfei Ma and Jie Chen. “Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport”.
In: CoRR abs/1912.11176 (2019). arXiv: 1912.11176. url: http://arxiv.org/abs/1912.11176.
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Solving One Level Of Coarsening

Figure: An illustration of how one level of coarsening is solved.
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Initial Formulation
▶ For any U ⊆ V , define:

▶ C(U) =
∑

v∈U cv

▶ W(U) =
∑

v∈U wv

▶ Formulation:

min
A,B,S

C(S) max
A,B
C(A ∪ B)

s.t. A ∩ B = ∅ ⇐⇒ s.t. A ∩ B = ∅
(A× B) ∩ E = ∅ (A× B) ∩ E = ∅
ℓA ≤ W(A) ≤ uA ℓA ≤ W(A) ≤ uA

ℓB ≤ W(B) ≤ uB ℓB ≤ W(B) ≤ uB

S = V − (A ∪ B)

7 / 22
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Notation

▶ With the subset A, we associate the binary vectors x , y :

xi =

{
1 if i ∈ A
0 if i ̸∈ A

yi =

{
1 if i ∈ B
0 if i ̸∈ B

▶ Let A be the adjacency matrix.

▶ The condition A ∩ B = ∅ is captured by the equation xT y = 0

▶ The condition (A× B) ∩ E = ∅ is captured by xTAy = 0.

▶ Adding them, we get xT (A+ I )y = 0.

8 / 22
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Binary Vector Formulation

▶ Let B = {0, 1}.

max
A,B
C(A ∪ B) max cT (x + y)

s.t. A ∩ B = ∅ ⇐⇒ s.t. xT (A+ I )y = 0

(A× B) ∩ E = ∅ ℓA ≤ wT x ≤ uA

ℓA ≤ W(A) ≤ uA ℓB ≤ wT y ≤ uB

ℓB ≤ W(B) ≤ uB x , y ∈ Bn

▶ The constraint xT (A+ I )y = 0 is somewhat complex and difficult to satisfy.

▶ We bring it into the objective, with a penalty γ > 0.
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Relaxing a Constraint

max cT (x + y) max cT (x + y)− γxT (A+ I )y

s.t. xT (A+ I )y = 0 ⇐⇒ s.t. ℓA ≤ wT x ≤ uA

ℓA ≤ wT x ≤ uA ℓB ≤ wT y ≤ uB

ℓB ≤ wT y ≤ uB x , y ∈ Bn

x , y ∈ Bn

▶ Proposition: If w ≥ 1 and γ ≥ max{ci : i ∈ V }, then for any feasible point (x , y)
of the relaxed problem satisfying f (x , y) ≥ γ(ℓA + ℓB), there is a feasible point
(x̄ , ȳ) of the strict problem which satisfies

cT (x̄ + ȳ) ≥ cT (x + y)− γxT (A+ I ).

▶ In practice, ℓA = ℓB = 1 is common, so f (x , y) ≥ γ(ℓA + ℓB) is easy to satisfy.
10 / 22
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Relaxing the Binary Requirements

max cT (x + y)− γxT (A+ I )y max cT (x + y)− γxT (A+ I )y

s.t. ℓA ≤ wT x ≤ uA ⇐⇒ s.t. ℓA ≤ wT x ≤ uA

ℓB ≤ wT y ≤ uB ℓB ≤ wT y ≤ uB

x , y ∈ Bn 0 ≤ x , y ≤ 1

▶ Proposition: If the original VSP problem is feasible, then the continuous problem
has a mostly binary solution. (i.e. at most one component in each of x , y is
fractional)9

9 William W. Hager, James T. Hungerford, and Ilya Safro. “A multilevel bilinear programming algorithm for the vertex separator problem”.
In: Computational Optimization and Applications 69.1 (2018), pp. 189–223. issn: 1573-2894. doi: 10.1007/s10589- 017- 9945- 2. url:
https://doi.org/10.1007/s10589-017-9945-2. 11 / 22
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Flips

min γxT (A+ I )y − cT (x + y)

s.t. wT x ≤ uA

wT y ≤ uB

0 ≤ x , y ≤ 1

▶ Single Flips: Flip a single entry in x or y from 0 to 1 (up-flip) or 1 to 0
(down-flip).

▶ Mixed Flips: Simultaneous up-flip in a vector and down-flip in the other.
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Possible Flips

Figure: An illustration of the possible flips that can be selected.
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Example Flips

▶ How do we find the best possible flip?
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Variation of Konno’s Mountain Climbing Algorithm10

min
x ,y

f (x , y) s.t. x ∈ P1, y ∈ P2

Algorithm Modified Mountain Climbing Algorithm

Data: A feasible point (x, y)
while (No more improvement in objective possible) do

x∗ ← argmin{f (x , y) : x ∈ P1}
y∗ ← argmin{f (x , y) : y ∈ P2}
Find the minimum of {f (x∗, y), f (x , y∗), f (x∗, y∗)}
Update (x , y) to either (x∗, y), (x , y∗), or (x∗, y∗) accordingly

end

10 Hiroshi Konno. “A cutting plane algorithm for solving bilinear programs”. In: Mathematical Programming 11.1 (1976), pp. 14–27. issn:
1436-4646. doi: 10.1007/BF01580367. url: https://doi.org/10.1007/BF01580367.
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Mountain Climbing Applied to VSP

min γxT (A+ I )y − cT (x + y)

s.t. wT x ≤ uA

wT y ≤ uB

0 ≤ x , y ≤ 1

▶ Constraints are decoupled, so we apply Mountain Climbing
▶ Objective is linear in x

min γxT (A+ I )y − cT (x + y) min dT x

s.t. wT x ≤ uA ⇐⇒ s.t. wT x ≤ uA

0 ≤ x ≤ 1 0 ≤ x ≤ 1
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Solving the LP

min dT x

s.t. wT x ≤ uA

0 ≤ x ≤ 1

▶ Partial Lagrangian relaxation: for 0 ≤ x ≤ 1, λ ≥ 0,

L(x , λ) = dT x + λ(wT x − uA) = (d + λw)T x − λuA

▶ Dual function: for λ ≥ 0

L(λ) = min
0≤x≤1

(d + λw)T x − λuA
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Finding the Dual

▶ Dual function: for λ ≥ 0, L(λ) = min0≤x≤1(d + λw)T x − λuA
▶ A minimizer x∗ is given by

x∗i =


1 if di + λwi < 0

0 if di + λwi > 0

free if di + λwi = 0

▶ Therefore
L(λ) =

∑
i :di+λwi<0

(di + λwi )− λuA
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Solving the Dual

L(λ) =
∑

i :di+λwi<0

(di + λwi )− λuA

▶ The dual is a continuous, piecewise linear, concave function
▶ The points of non-differentiability occur at λ = −di

wi

Figure: A Graph of the Dual Function

19 / 22



Introduction Multilevel Framework Converting to a QP Solving the Discrete Problem Solving the Continuous Problem Next Steps & Conclusion

Next Steps & Conclusion

▶ The Flips and Mountain Climbing procedures have a very efficient
implementation, and initial results suggest this algorithm is very fast.

▶ However, the algorithm does not yet produce very good separators.

▶ An extensive computational comparative analysis is needed to compare the
algorithm’s performance against state of the art algorithms for solving the VSP.
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Next Steps & Conclusion Continued

▶ One issue which may contribute to the low-quality separators is that a large γ in
the objective

min γxT (A+ I )y − cT (x + y)

heavily penalizes steps which violate the constraint xT (A+ I )y . This penalty may
be keeping the algorithm from exploring other regions of the solution space which
may have more favorable separators.

▶ Thus, a possible direction for research is reducing γ at key moments in the
algorithm in order to allow the exploration of yet-unknown regions of the solution
space.
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Questions

Thank You!
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