A Theory of Strongly Coupled Oscillators

Youngmin Park University of Florida SIAM + Applied & Numerical Analysis Seminar

October 28, 2022

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の へ つ 1/38

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 2/38

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Computationally complex

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- Computationally complex
- Coupled bursting neurons

- Computationally complex
- Coupled bursting neurons
- Strongly coupled heterogeneous oscillators

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

- Computationally complex
- Coupled bursting neurons
- Strongly coupled heterogeneous oscillators

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Coupled Oscillators Example 2: Chemical Oscillators

Norton et al. PRL, 2019 (Fraden Lab, Brandeis U.)

Coupled Oscillators Example 2: Chemical Oscillators

Norton et al. PRL, 2019 (Fraden Lab, Brandeis U.)

How can we understand the existence and stability of phase-locked solutions?

$$\dot{x} = F(x)$$

\blacktriangleright F : $\mathbb{R}^n \to \mathbb{R}^n$

< □ > < @ > < ≧ > < ≧ > 差 の Q @ 5/38

$$\dot{x} = F(x)$$

< □ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ ○ ♀ ♡ < ♡ 5/38

 \triangleright F : $\mathbb{R}^n \to \mathbb{R}^n$

T-periodic solution Y(t)

$$\dot{x} = F(x)$$

 $\blacktriangleright \mathsf{F}: \mathbb{R}^n \to \mathbb{R}^n$

- *T*-periodic solution Y(t)
- Isolated periodic orbit

$$\dot{x} = F(x)$$

 $\blacktriangleright \mathsf{F}: \mathbb{R}^n \to \mathbb{R}^n$

- *T*-periodic solution Y(t)
- Isolated periodic orbit
- Stable

$$\dot{x} = F(x)$$

- \triangleright F : $\mathbb{R}^n \to \mathbb{R}^n$
- T-periodic solution Y(t)
- Isolated periodic orbit
- Stable

$$\dot{x} = F(x)$$

- $\blacktriangleright \mathsf{F}: \mathbb{R}^n \to \mathbb{R}^n$
- *T*-periodic solution Y(t)
- Isolated periodic orbit
- Stable

Reduce Each Oscillator to Phase Angle

Reduce Each Oscillator to Phase Angle

$$\dot{\mathbf{x}}_i = \mathsf{F}(\mathbf{x}_i) + \varepsilon \mathsf{G}(\mathbf{x}_i, \mathbf{x}_{3-i}), \quad \mathbf{x}_i \in \mathbb{R}^n, \quad i = 1, 2,$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction).

$$\dot{\mathbf{x}}_i = \mathsf{F}(\mathbf{x}_i) + \varepsilon \mathsf{G}(\mathbf{x}_i, \mathbf{x}_{3-i}), \quad \mathbf{x}_i \in \mathbb{R}^n, \quad i = 1, 2,$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction). Small ε explicitly allows transformation to phase (θ_i):

$$\dot{\theta}_i = 1 + \varepsilon$$
 (Phase Response) * G(x_i, x_{3-i}), $\theta_i \in \mathbb{R}$.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 - の Q (P 8/38)

$$\dot{\mathbf{x}}_i = \mathsf{F}(\mathbf{x}_i) + \boldsymbol{\varepsilon} \,\mathsf{G}(\mathbf{x}_i, \mathbf{x}_{3-i}), \quad \mathbf{x}_i \in \mathbb{R}^n, \quad i = 1, 2,$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction). Small ε explicitly allows transformation to phase (θ_i):

$$\dot{ heta}_i = 1 + \varepsilon$$
 (Phase Response) * G(x_i, x_{3-i}), $heta_i \in \mathbb{R}$.

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQで 8/38

Then study phase-difference dynamics, $\dot{\phi} = \dot{\theta}_2 - \dot{\theta}_1$.

$$\dot{\mathbf{x}}_i = \mathsf{F}(\mathbf{x}_i) + \varepsilon \mathsf{G}(\mathbf{x}_i, \mathbf{x}_{3-i}), \quad \mathbf{x}_i \in \mathbb{R}^n, \quad i = 1, 2,$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction). Small ε explicitly allows transformation to phase (θ_i):

$$\dot{ heta}_i = 1 + \varepsilon$$
 (Phase Response) * G(x_i, x_{3-i}), $heta_i \in \mathbb{R}$.

Then study phase-difference dynamics, $\dot{\phi} = \dot{\theta}_2 - \dot{\theta}_1$.

Cartoon of the right-hand side of ϕ

Weak Coupling Theory: Phase Difference Equation

Weak Coupling Theory: Initial Condition 1

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ 10/38

Weak Coupling Theory: Initial Condition 2

< □ > < □ > < □ > < Ξ > < Ξ > Ξ · の Q · 11/38

Weak Coupling Theory: Phase Differences Over Time

Phase Difference Over Time

What Happens for Stronger Coupling?

Thalamic neural model (2×4 dimensions) with chemical synaptic coupling ($g_{syn} = \varepsilon$)

What Happens for Stronger Coupling?

Thalamic neural model (2×4 dimensions) with chemical synaptic coupling ($g_{syn} = \varepsilon$)

Phase Difference Over Time

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 15/38

 Reduce two coupled oscillators to one phase difference variable.

Phase Difference Over Time

- Reduce two coupled oscillators to one phase difference variable.
- Fixed points capture long-term phase-locking behavior.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 15/38

Phase Difference Over Time

- Reduce two coupled oscillators to one phase difference variable.
- Fixed points capture long-term phase-locking behavior.
- Generalizable to N oscillators (N algebraic equations in N unknowns).

Phase Difference Over Time

- Reduce two coupled oscillators to one phase difference variable.
- Fixed points capture long-term phase-locking behavior.
- Generalizable to N oscillators (N algebraic equations in N unknowns).
- ► Want these same benefits for stronger coupling.

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathsf{F}(\mathbf{x}_1) + \varepsilon \mathsf{G}(\mathbf{x}_1, \mathbf{x}_2), \\ \dot{\mathbf{x}}_2 &= \mathsf{F}(\mathbf{x}_2) + \varepsilon \mathsf{G}(\mathbf{x}_2, \mathbf{x}_1). \end{split}$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 16/38

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathsf{F}(\mathbf{x}_1) + \varepsilon \mathsf{G}(\mathbf{x}_1, \mathbf{x}_2), \\ \dot{\mathbf{x}}_2 &= \mathsf{F}(\mathbf{x}_2) + \varepsilon \mathsf{G}(\mathbf{x}_2, \mathbf{x}_1). \end{split}$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 16/38

▶ $F : \mathbb{R}^n \to \mathbb{R}^n$, smooth.

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathsf{F}(\mathbf{x}_1) + \varepsilon \mathsf{G}(\mathbf{x}_1, \mathbf{x}_2), \\ \dot{\mathbf{x}}_2 &= \mathsf{F}(\mathbf{x}_2) + \varepsilon \mathsf{G}(\mathbf{x}_2, \mathbf{x}_1). \end{split}$$

▶ $F : \mathbb{R}^n \to \mathbb{R}^n$, smooth.

Each system admits a *T*-periodic stable limit cycle Y(t) when ε = 0.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ = りへで 16/38

$$\begin{aligned} \dot{\mathbf{x}}_1 &= \mathsf{F}(\mathbf{x}_1) + \varepsilon \mathsf{G}(\mathbf{x}_1, \mathbf{x}_2), \\ \dot{\mathbf{x}}_2 &= \mathsf{F}(\mathbf{x}_2) + \varepsilon \mathsf{G}(\mathbf{x}_2, \mathbf{x}_1). \end{aligned}$$

F :
$$\mathbb{R}^n \to \mathbb{R}^n$$
, smooth.

Each system admits a *T*-periodic stable limit cycle Y(t) when ε = 0.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ = りへで 16/38

• Limit cycles persist for $\varepsilon \neq 0$.

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathsf{F}(\mathbf{x}_1) + \varepsilon \mathsf{G}(\mathbf{x}_1, \mathbf{x}_2), \\ \dot{\mathbf{x}}_2 &= \mathsf{F}(\mathbf{x}_2) + \varepsilon \mathsf{G}(\mathbf{x}_2, \mathbf{x}_1). \end{split}$$

▶
$$F : \mathbb{R}^n \to \mathbb{R}^n$$
, smooth.

Each system admits a *T*-periodic stable limit cycle Y(t) when ε = 0.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ = りへで 16/38

- Limit cycles persist for $\varepsilon \neq 0$.
- $|\varepsilon| \ge 0$ not necessarily small.

$$\begin{split} \dot{\mathbf{x}}_1 &= \mathsf{F}(\mathbf{x}_1) + \varepsilon \mathsf{G}(\mathbf{x}_1, \mathbf{x}_2), \\ \dot{\mathbf{x}}_2 &= \mathsf{F}(\mathbf{x}_2) + \varepsilon \mathsf{G}(\mathbf{x}_2, \mathbf{x}_1). \end{split}$$

F :
$$\mathbb{R}^n \to \mathbb{R}^n$$
, smooth.

- Each system admits a *T*-periodic stable limit cycle Y(t) when ε = 0.
- Limit cycles persist for $\varepsilon \neq 0$.
- $|\varepsilon| \ge 0$ not necessarily small.
- $G : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, general smooth coupling function.
Transform the system into phase θ_i .

Transform the system into phase θ_i .

$$\frac{d\theta_1}{dt} = \nabla \theta_1 \cdot \frac{d\mathsf{x}_1}{dt}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transform the system into phase θ_i .

$$\begin{aligned} \frac{d\theta_1}{dt} &= \nabla \theta_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \end{aligned}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transform the system into phase θ_i .

$$\begin{aligned} \frac{d\theta_1}{dt} &= \nabla \theta_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \\ &= \nabla \theta_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

◆□ ▶ ◆ @ ▶ ◆ \exp ▶ \exp ≥ \overline \sigma \circ \c

Transform the system into phase θ_i .

$$\begin{aligned} \frac{d\theta_1}{dt} &= \nabla \theta_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \\ &= \nabla \theta_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

◆□ ▶ < 畳 ▶ < Ξ ▶ < Ξ ▶ Ξ ∽ Q ↔ 17/38</p>

Transform the system into phase θ_i .

$$\begin{aligned} \frac{d\theta_1}{dt} &= \nabla \theta_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_1 \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

▶ In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_i = \nabla \theta_i(t)$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ⑦ Q ○ 17/38

Transform the system into phase θ_i .

$$\begin{aligned} \frac{d\theta_1}{dt} &= \nabla \theta_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_1 \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

In classic weak coupling theory, ε ≪ 1 and ∇θ_i = ∇θ_i(t).
 In non-weak coupling theory, ∇θ_i = Z(θ_i, ψ_i).

<□ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ ○ Q @ 17/38

Transform the system into phase θ_i .

$$\begin{aligned} \frac{d\theta_1}{dt} &= \nabla \theta_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_1 \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

In classic weak coupling theory, ε ≪ 1 and ∇θ_i = ∇θ_i(t).
In non-weak coupling theory, ∇θ_i = Z(θ_i, ψ_i).
ψ_i is an amplitude coordinate.

$$\frac{d\psi_1}{dt} = \nabla \psi_1 \cdot \frac{d\mathsf{x}_1}{dt}$$

$$\begin{aligned} \frac{d\psi_1}{dt} &= \nabla \psi_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \psi_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \end{aligned}$$

$$\begin{aligned} \frac{d\psi_1}{dt} &= \nabla \psi_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \psi_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \\ &= \nabla \psi_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \psi_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

< □ > < @ > < ≧ > < ≧ > ≧ のQ ⁽²⁾ 18/38

$$\begin{aligned} \frac{d\psi_1}{dt} &= \nabla \psi_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \psi_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \\ &= \nabla \psi_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \psi_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= \kappa \psi_1 + \varepsilon \nabla \psi_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

< □ > < @ > < ≧ > < ≧ > ≧ のQ ⁽²⁾ 18/38

$$\begin{aligned} \frac{d\psi_1}{dt} &= \nabla \psi_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \psi_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \\ &= \nabla \psi_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \psi_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= \kappa \psi_1 + \varepsilon \nabla \psi_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 18/38

$$\begin{aligned} \frac{d\psi_1}{dt} &= \nabla \psi_1 \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \psi_1 \cdot \left[\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)\right] \\ &= \nabla \psi_1 \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \psi_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= \kappa \psi_1 + \varepsilon \nabla \psi_1 \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 18/38)

 \blacktriangleright κ Floquet exponent.

• $\nabla \psi_i \equiv \mathcal{I}(\theta_i, \psi_i)$ quantifies amplitude shifts

[Park and Wilson, 2021]

$$\begin{split} \dot{\theta}_i &= 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i &= \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j). \end{split}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E の Q ↔ 19/38

 \triangleright θ_i phase, ψ_i amplitude.

[Park and Wilson, 2021]

$$\dot{\theta}_i = 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i = \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j).$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E の Q ↔ 19/38

 \triangleright θ_i phase, ψ_i amplitude.

 \blacktriangleright *Z* general phase response.

[Park and Wilson, 2021]

$$\dot{\theta}_i = 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i = \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j).$$

- θ_i phase, ψ_i amplitude.
- \blacktriangleright *Z* general phase response.
- ▶ *I* general isostable (amplitude) response.

[Park and Wilson, 2021]

$$\dot{\theta}_i = 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i = \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j).$$

- θ_i phase, ψ_i amplitude.
- \blacktriangleright *Z* general phase response.
- \mathcal{I} general isostable (amplitude) response.
- Reduced a system of $2 \times n$ equations into 4 equations.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E りへで 19/38

[Park and Wilson, 2021]

$$\dot{\theta}_i = 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i = \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j).$$

- θ_i phase, ψ_i amplitude.
- \blacktriangleright *Z* general phase response.
- \mathcal{I} general isostable (amplitude) response.
- Reduced a system of $2 \times n$ equations into 4 equations.
- Next step: reduce these 4 equations into 2 equations.

Expand everything in $\psi\text{, }\varepsilon\text{:}$

$$\mathcal{Z}(\theta_i,\psi_i)\approx \mathsf{Z}^{(0)}(\theta_i)+\psi_i\mathsf{Z}^{(1)}(\theta_i)+\psi_i^2\mathsf{Z}^{(2)}(\theta_i)+\ldots,$$

Expand everything in $\psi\text{, }\varepsilon\text{:}$

$$\mathcal{Z}(\theta_i, \psi_i) \approx \mathsf{Z}^{(0)}(\theta_i) + \psi_i \mathsf{Z}^{(1)}(\theta_i) + \psi_i^2 \mathsf{Z}^{(2)}(\theta_i) + \dots,$$

$$\mathcal{I}(\theta_i, \psi_i) \approx \mathsf{I}^{(0)}(\theta_i) + \psi_i \mathsf{I}^{(1)}(\theta_i) + \psi_i^2 \mathsf{I}^{(2)}(\theta_i) + \dots,$$

Expand everything in $\psi\text{, }\varepsilon\text{:}$

$$\begin{aligned} \mathcal{Z}(\theta_i,\psi_i) &\approx \mathsf{Z}^{(0)}(\theta_i) + \psi_i \mathsf{Z}^{(1)}(\theta_i) + \psi_i^2 \mathsf{Z}^{(2)}(\theta_i) + \dots, \\ \mathcal{I}(\theta_i,\psi_i) &\approx \mathsf{I}^{(0)}(\theta_i) + \psi_i \mathsf{I}^{(1)}(\theta_i) + \psi_i^2 \mathsf{I}^{(2)}(\theta_i) + \dots, \\ &\qquad \mathsf{x}_i(t) \approx \mathsf{Y}(\theta_i) + \psi_i \mathsf{g}^{(1)}(\theta_i) + \psi_i^2 \mathsf{g}^{(2)}(\theta_i) + \dots, \end{aligned}$$

Expand everything in $\psi\text{, }\varepsilon\text{:}$

$$\begin{aligned} \mathcal{Z}(\theta_i,\psi_i) &\approx \mathsf{Z}^{(0)}(\theta_i) + \psi_i \mathsf{Z}^{(1)}(\theta_i) + \psi_i^2 \mathsf{Z}^{(2)}(\theta_i) + \dots, \\ \mathcal{I}(\theta_i,\psi_i) &\approx \mathsf{I}^{(0)}(\theta_i) + \psi_i \mathsf{I}^{(1)}(\theta_i) + \psi_i^2 \mathsf{I}^{(2)}(\theta_i) + \dots, \\ &\qquad \mathsf{x}_i(t) &\approx \mathsf{Y}(\theta_i) + \psi_i \mathsf{g}^{(1)}(\theta_i) + \psi_i^2 \mathsf{g}^{(2)}(\theta_i) + \dots, \\ &\qquad \psi_i(t) &\approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots. \end{aligned}$$

Expand everything in $\psi\text{, }\varepsilon\text{:}$

$$\begin{aligned} \mathcal{Z}(\theta_i,\psi_i) &\approx \mathsf{Z}^{(0)}(\theta_i) + \psi_i \mathsf{Z}^{(1)}(\theta_i) + \psi_i^2 \mathsf{Z}^{(2)}(\theta_i) + \dots, \\ \mathcal{I}(\theta_i,\psi_i) &\approx \mathsf{I}^{(0)}(\theta_i) + \psi_i \mathsf{I}^{(1)}(\theta_i) + \psi_i^2 \mathsf{I}^{(2)}(\theta_i) + \dots, \\ &\qquad \mathsf{x}_i(t) &\approx \mathsf{Y}(\theta_i) + \psi_i \mathsf{g}^{(1)}(\theta_i) + \psi_i^2 \mathsf{g}^{(2)}(\theta_i) + \dots, \\ &\qquad \psi_i(t) &\approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots. \end{aligned}$$

<□▶ < @ ▶ < E ▶ < E ▶ E の へ ? 20/38

Put into the phase-amplitude equations

Expand everything in ψ , ε :

$$\begin{aligned} \mathcal{Z}(\theta_i,\psi_i) &\approx \mathsf{Z}^{(0)}(\theta_i) + \psi_i \mathsf{Z}^{(1)}(\theta_i) + \psi_i^2 \mathsf{Z}^{(2)}(\theta_i) + \dots, \\ \mathcal{I}(\theta_i,\psi_i) &\approx \mathsf{I}^{(0)}(\theta_i) + \psi_i \mathsf{I}^{(1)}(\theta_i) + \psi_i^2 \mathsf{I}^{(2)}(\theta_i) + \dots, \\ &\qquad \mathsf{x}_i(t) &\approx \mathsf{Y}(\theta_i) + \psi_i \mathsf{g}^{(1)}(\theta_i) + \psi_i^2 \mathsf{g}^{(2)}(\theta_i) + \dots, \\ &\qquad \psi_i(t) &\approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots. \end{aligned}$$

< □ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ 볼 · ♡ < ♡ 20/38

- Put into the phase-amplitude equations
- Combinatorial explosion of terms.

Expand everything in ψ , ε :

$$\begin{aligned} \mathcal{Z}(\theta_i,\psi_i) &\approx \mathsf{Z}^{(0)}(\theta_i) + \psi_i \mathsf{Z}^{(1)}(\theta_i) + \psi_i^2 \mathsf{Z}^{(2)}(\theta_i) + \dots, \\ \mathcal{I}(\theta_i,\psi_i) &\approx \mathsf{I}^{(0)}(\theta_i) + \psi_i \mathsf{I}^{(1)}(\theta_i) + \psi_i^2 \mathsf{I}^{(2)}(\theta_i) + \dots, \\ &\qquad \mathsf{x}_i(t) &\approx \mathsf{Y}(\theta_i) + \psi_i \mathsf{g}^{(1)}(\theta_i) + \psi_i^2 \mathsf{g}^{(2)}(\theta_i) + \dots, \\ &\qquad \psi_i(t) &\approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots. \end{aligned}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 20/38

- Put into the phase-amplitude equations
- Combinatorial explosion of terms.
- Use symbolic packages to collect terms.

Eliminate the amplitude equations

$$\begin{split} \dot{\theta}_i &= 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i &= \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j). \end{split}$$

• Each term in the expansion

$$\psi_i(t) \approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots$$
 satisfies a linear ODE.

◆□▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q ○ 21/38

Eliminate the amplitude equations

$$\begin{split} \dot{\theta}_i &= 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i &= \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j). \end{split}$$

• Each term in the expansion

$$\psi_i(t) \approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots$$
 satisfies a linear ODE.

<□▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 21/38

Solve for each $p_i^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.

Eliminate the amplitude equations

$$\begin{split} \dot{\theta}_i &= 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i &= \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j). \end{split}$$

• Each term in the expansion

$$\psi_i(t) \approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots$$
 satisfies a linear ODE.

<□▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 21/38

- Solve for each $p_i^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.
- ▶ Plug back into the equation for θ_i .

Eliminate the amplitude equations

$$\begin{aligned} \theta_i &= 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i &= \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j). \end{aligned}$$

• Each term in the expansion

$$\psi_i(t) \approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots$$
 satisfies a linear ODE.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q @ 21/38

- Solve for each $p_i^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.
- ▶ Plug back into the equation for θ_i .
- Now we have 2 equations, one for each θ_i .

Eliminate the amplitude equations

$$\begin{aligned} \theta_i &= 1 + \varepsilon \mathcal{Z}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j), \\ \dot{\psi}_i &= \kappa \psi_i + \varepsilon \mathcal{I}(\theta_i, \psi_i) \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j). \end{aligned}$$

• Each term in the expansion

$$\psi_i(t) \approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots$$
 satisfies a linear ODE.

- Solve for each $p_i^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.
- ▶ Plug back into the equation for θ_i .

Now we have 2 equations, one for each θ_i .

$$\dot{\theta}_i = 1 + \varepsilon [\mathsf{Z}^{(0)}(\theta_i) + \psi_i \mathsf{Z}^{(1)}(\theta_i) + \psi_i \mathsf{Z}^{(2)}(\theta_i) + \ldots] \cdot \mathsf{G}(\theta_i, \psi_i, \theta_j, \psi_j),$$

where $\psi_i(t) \approx \varepsilon p_i^{(1)}(t) + \varepsilon^2 p_i^{(2)}(t) + \varepsilon^3 p_i^{(3)}(t) + \dots$

Finally, collect in powers of ε and take the average

$$\dot{ heta}_1 = arepsilon \mathcal{H}^{(1)}(heta_2 - heta_1) + arepsilon^2 \mathcal{H}^{(2)}(heta_2 - heta_1) + arepsilon^3 \mathcal{H}^{(3)}(heta_2 - heta_1) + \dots$$

where

$$\begin{split} \mathcal{H}^{(1)}(\theta) &= \frac{1}{T} \int_{0}^{T} Z^{(0)} \cdot \mathcal{M}^{(0,0)} ds. \\ \mathcal{H}^{(2)}(\theta) &= \frac{1}{T} \int_{0}^{T} p_{1}^{(1)} Z^{(1)} \cdot \mathcal{M}^{(0,0)} + p_{2}^{(1)} Z^{(0)} \cdot \mathcal{M}^{(0,1)} + p_{1}^{(1)} Z^{(0)} \mathcal{M}^{(1,0)} ds. \\ \mathcal{H}^{(3)}(\theta) &= \frac{1}{T} \int_{0}^{T} \left[p_{1}^{(2)} Z^{(1)} \cdot \mathcal{M}^{(0,0)} + \left(p_{1}^{(1)} \right)^{2} Z^{(2)} \cdot \mathcal{M}^{(0,0)} \right. \\ &\qquad \left. + p_{1}^{(1)} p_{2}^{(1)} Z^{(1)} \cdot \mathcal{M}^{(0,1)} + \left(p_{1}^{(1)} \right)^{2} Z^{(1)} \cdot \mathcal{M}^{(1,0)} \right] ds. \end{split}$$

Finally, collect in powers of ε and take the average

$$\dot{ heta}_1 = arepsilon \mathcal{H}^{(1)}(heta_2 - heta_1) + arepsilon^2 \mathcal{H}^{(2)}(heta_2 - heta_1) + arepsilon^3 \mathcal{H}^{(3)}(heta_2 - heta_1) + \dots$$

where

$$\begin{split} \mathcal{H}^{(1)}(\theta) &= \frac{1}{T} \int_{0}^{T} Z^{(0)} \cdot \mathcal{M}^{(0,0)} ds. \\ \mathcal{H}^{(2)}(\theta) &= \frac{1}{T} \int_{0}^{T} p_{1}^{(1)} Z^{(1)} \cdot \mathcal{M}^{(0,0)} + p_{2}^{(1)} Z^{(0)} \cdot \mathcal{M}^{(0,1)} + p_{1}^{(1)} Z^{(0)} \mathcal{M}^{(1,0)} ds. \\ \mathcal{H}^{(3)}(\theta) &= \frac{1}{T} \int_{0}^{T} \left[p_{1}^{(2)} Z^{(1)} \cdot \mathcal{M}^{(0,0)} + \left(p_{1}^{(1)} \right)^{2} Z^{(2)} \cdot \mathcal{M}^{(0,0)} \right. \\ &\qquad \left. + p_{1}^{(1)} p_{2}^{(1)} Z^{(1)} \cdot \mathcal{M}^{(0,1)} + \left(p_{1}^{(1)} \right)^{2} Z^{(1)} \cdot \mathcal{M}^{(1,0)} \right] ds. \end{split}$$

• $M^{(i,j)}$ are partial derivatives of the coupling function G.

Finally, collect in powers of ε and take the average

$$\dot{ heta}_1 = arepsilon \mathcal{H}^{(1)}(heta_2 - heta_1) + arepsilon^2 \mathcal{H}^{(2)}(heta_2 - heta_1) + arepsilon^3 \mathcal{H}^{(3)}(heta_2 - heta_1) + \dots$$

where

$$\begin{split} \mathcal{H}^{(1)}(\theta) &= \frac{1}{T} \int_{0}^{T} Z^{(0)} \cdot \mathcal{M}^{(0,0)} ds. \\ \mathcal{H}^{(2)}(\theta) &= \frac{1}{T} \int_{0}^{T} p_{1}^{(1)} Z^{(1)} \cdot \mathcal{M}^{(0,0)} + p_{2}^{(1)} Z^{(0)} \cdot \mathcal{M}^{(0,1)} + p_{1}^{(1)} Z^{(0)} \mathcal{M}^{(1,0)} ds. \\ \mathcal{H}^{(3)}(\theta) &= \frac{1}{T} \int_{0}^{T} \left[p_{1}^{(2)} Z^{(1)} \cdot \mathcal{M}^{(0,0)} + \left(p_{1}^{(1)} \right)^{2} Z^{(2)} \cdot \mathcal{M}^{(0,0)} \right. \\ &\qquad \left. + p_{1}^{(1)} p_{2}^{(1)} Z^{(1)} \cdot \mathcal{M}^{(0,1)} + \left(p_{1}^{(1)} \right)^{2} Z^{(1)} \cdot \mathcal{M}^{(1,0)} \right] ds. \end{split}$$

 M^(i,j) are partial derivatives of the coupling function G.
 Z^(k) = Z^(k)(s), M^(k,ℓ) = M^(k,ℓ)(s, θ + s), p₁^(k) = p₁^(k)(s, θ + s), p₂^(k) = p₂^(k)(θ + s, s), s = s = 200° 22/38

$$\dot{ heta}_1 = arepsilon \mathcal{H}^{(1)}(heta_2 - heta_1) + arepsilon^2 \mathcal{H}^{(2)}(heta_2 - heta_1) + arepsilon^3 \mathcal{H}^{(3)}(heta_2 - heta_1) + \dots,$$

Caveat: used first-order averaging theory:

$$\dot{\mathbf{x}} = \varepsilon \mathsf{F}(\mathbf{x}, t, \varepsilon), \quad \mathbf{x}(\mathbf{0}) = \mathbf{x}_{\mathbf{0}},$$

F is T-periodic in t. Consider the averaged equation,

$$\dot{z} = \varepsilon \overline{F}(z), \quad z(0) = z_0,$$

where $\overline{F} = \frac{1}{T} \int_0^T F(x, s, 0) ds$. Then $x(t) = z(t) + O(\varepsilon)$ for $O(1/\varepsilon)$ time.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 23/38

$$\dot{ heta}_1 = arepsilon \mathcal{H}^{(1)}(heta_2 - heta_1) + arepsilon^2 \mathcal{H}^{(2)}(heta_2 - heta_1) + arepsilon^3 \mathcal{H}^{(3)}(heta_2 - heta_1) + \dots,$$

Caveat: used first-order averaging theory:

$$\dot{\mathbf{x}} = \varepsilon \mathsf{F}(\mathbf{x}, t, \varepsilon), \quad \mathbf{x}(\mathbf{0}) = \mathbf{x}_{\mathbf{0}},$$

F is T-periodic in t. Consider the averaged equation,

$$\dot{z} = \varepsilon \overline{F}(z), \quad z(0) = z_0,$$

where $\overline{F} = \frac{1}{T} \int_0^T F(x, s, 0) ds$. Then $x(t) = z(t) + O(\varepsilon)$ for $O(1/\varepsilon)$ time.

In practice, first-order averaging is sufficient.
Let
$$\phi = \theta_2 - \theta_1$$
.
 $\dot{\phi} = \varepsilon \left[\mathcal{H}^{(1)}(-\phi) - \mathcal{H}^{(1)}(\phi) \right]$
 $+ \varepsilon^2 \left[\mathcal{H}^{(2)}(-\phi) - \mathcal{H}^{(2)}(\phi) \right]$
 $+ \varepsilon^3 \left[\mathcal{H}^{(3)}(-\phi) - \mathcal{H}^{(3)}(\phi) \right] + \dots,$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ り < ○ 24/38

Let
$$\phi = \theta_2 - \theta_1$$
.
 $\dot{\phi} = \varepsilon \left[\mathcal{H}^{(1)}(-\phi) - \mathcal{H}^{(1)}(\phi) \right]$
 $+ \varepsilon^2 \left[\mathcal{H}^{(2)}(-\phi) - \mathcal{H}^{(2)}(\phi) \right]$
 $+ \varepsilon^3 \left[\mathcal{H}^{(3)}(-\phi) - \mathcal{H}^{(3)}(\phi) \right] + \dots,$

▶ $\mathcal{H}^{(1)}(-\phi) - \mathcal{H}^{(1)}(\phi)$: Classic weak coupling theory

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Let
$$\phi = \theta_2 - \theta_1$$
.
 $\dot{\phi} = \varepsilon \left[\mathcal{H}^{(1)}(-\phi) - \mathcal{H}^{(1)}(\phi) \right]$
 $+ \varepsilon^2 \left[\mathcal{H}^{(2)}(-\phi) - \mathcal{H}^{(2)}(\phi) \right]$
 $+ \varepsilon^3 \left[\mathcal{H}^{(3)}(-\phi) - \mathcal{H}^{(3)}(\phi) \right] + \dots,$

• $\mathcal{H}^{(1)}(-\phi) - \mathcal{H}^{(1)}(\phi)$: Classic weak coupling theory • $\mathcal{H}^{(2)}(-\phi) - \mathcal{H}^{(2)}(\phi)$: [Wilson and Ermentrout, 2019]

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ のへで 24/38

Let
$$\phi = \theta_2 - \theta_1$$
.
 $\dot{\phi} = \varepsilon \left[\mathcal{H}^{(1)}(-\phi) - \mathcal{H}^{(1)}(\phi) \right]$

$$+ \varepsilon^2 \left[\mathcal{H}^{(2)}(-\phi) - \mathcal{H}^{(2)}(\phi) \right]$$

$$+ \varepsilon^3 \left[\mathcal{H}^{(3)}(-\phi) - \mathcal{H}^{(3)}(\phi) \right] + \dots,$$

H⁽¹⁾(-φ) - *H*⁽¹⁾(φ): Classic weak coupling theory
 H⁽²⁾(-φ) - *H*⁽²⁾(φ): [Wilson and Ermentrout, 2019]
 H⁽³⁾(-φ) - *H*⁽³⁾(φ) and beyond: [Park and Wilson, 2021]

Let
$$\phi = \theta_2 - \theta_1$$
.
 $\dot{\phi} = \varepsilon \left[\mathcal{H}^{(1)}(-\phi) - \mathcal{H}^{(1)}(\phi) \right]$
 $+ \varepsilon^2 \left[\mathcal{H}^{(2)}(-\phi) - \mathcal{H}^{(2)}(\phi) \right]$
 $+ \varepsilon^3 \left[\mathcal{H}^{(3)}(-\phi) - \mathcal{H}^{(3)}(\phi) \right] + \dots,$

H⁽¹⁾(-φ) – H⁽¹⁾(φ): Classic weak coupling theory
 H⁽²⁾(-φ) – H⁽²⁾(φ): [Wilson and Ermentrout, 2019]
 H⁽³⁾(-φ) – H⁽³⁾(φ) and beyond: [Park and Wilson, 2021]
 Takeaway: A scalar ODE describes the phase difference dynamics for ε not necessarily small.

Complex Ginzburg-Landau

$$\begin{aligned} x'_j &= (1 - x_j^2 - y_j^2) x_j - q(x_j^2 + y_j^2) y_j + \varepsilon \left[x_k - x_j - d(y_k - y_j) \right], \\ y'_j &= (1 - x_j^2 - y_j^2) y_j + q(x_j^2 + y_j^2) x_j + \varepsilon \left[y_k - y_j + d(x_k - x_j) \right], \end{aligned}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 25/38

- j = 3 k with k = 1, 2.
 - Tractable model.

Complex Ginzburg-Landau

$$\begin{aligned} x'_j &= (1 - x_j^2 - y_j^2) x_j - q(x_j^2 + y_j^2) y_j + \varepsilon \left[x_k - x_j - d(y_k - y_j) \right], \\ y'_j &= (1 - x_j^2 - y_j^2) y_j + q(x_j^2 + y_j^2) x_j + \varepsilon \left[y_k - y_j + d(x_k - x_j) \right], \end{aligned}$$

◆□ ▶ < 畳 ▶ < 星 ▶ < 星 ▶ 25/38</p>

- j = 3 k with k = 1, 2.
 - Tractable model.
 - For d = 0.4, $\varepsilon = 0.3$, antiphase is stable.

Complex Ginzburg-Landau

$$\begin{aligned} x'_j &= (1 - x_j^2 - y_j^2) x_j - q(x_j^2 + y_j^2) y_j + \varepsilon \left[x_k - x_j - d(y_k - y_j) \right], \\ y'_j &= (1 - x_j^2 - y_j^2) y_j + q(x_j^2 + y_j^2) x_j + \varepsilon \left[y_k - y_j + d(x_k - x_j) \right], \end{aligned}$$

- j = 3 k with k = 1, 2.
 - Tractable model.
 - For d = 0.4, $\varepsilon = 0.3$, antiphase is stable.
 - Compare to the reduced equations:

Complex Ginzburg-Landau

$$\begin{aligned} x'_j &= (1 - x_j^2 - y_j^2) x_j - q(x_j^2 + y_j^2) y_j + \varepsilon \left[x_k - x_j - d(y_k - y_j) \right], \\ y'_j &= (1 - x_j^2 - y_j^2) y_j + q(x_j^2 + y_j^2) x_j + \varepsilon \left[y_k - y_j + d(x_k - x_j) \right], \end{aligned}$$

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへで 25/38

- j = 3 k with k = 1, 2.
 - Tractable model.
 - For d = 0.4, $\varepsilon = 0.3$, antiphase is stable.
 - Compare to the reduced equations:

Complex Ginzburg-Landau

$$\begin{aligned} x'_j &= (1 - x_j^2 - y_j^2) x_j - q(x_j^2 + y_j^2) y_j + \varepsilon \left[x_k - x_j - d(y_k - y_j) \right], \\ y'_j &= (1 - x_j^2 - y_j^2) y_j + q(x_j^2 + y_j^2) x_j + \varepsilon \left[y_k - y_j + d(x_k - x_j) \right], \end{aligned}$$

$$j = 3 - k$$
 with $k = 1, 2$.

Tractable model.

For d = 0.4, $\varepsilon = 0.3$, antiphase is stable.

Compare to the reduced equations:

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ○ 26/38

Complex Ginzburg-Landau

$$\begin{aligned} x'_j &= (1 - x_j^2 - y_j^2) x_j - q(x_j^2 + y_j^2) y_j + \varepsilon \left[x_k - x_j - d(y_k - y_j) \right], \\ y'_j &= (1 - x_j^2 - y_j^2) y_j + q(x_j^2 + y_j^2) x_j + \varepsilon \left[y_k - y_j + d(x_k - x_j) \right], \end{aligned}$$

$$j = 3 - k$$
 with $k = 1, 2$.

Tractable model.

For $d = 0.4, \varepsilon = 0.3$, antiphase is stable.

Compare to the reduced equations:

Application to a "Simple" Model: Two Parameter Diagram

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ ○ 28/38

Application to a "Simple" Model: Two Parameter Diagram

▲□▶ ▲圖▶ ▲ ■▶ ▲ ■ ▶ ■ のへで 29/38

Application to a "Simple" Model: Two Parameter Diagram

4 ロ ト 4 日 ト 4 王 ト 4 王 - うへで 30/38

Application to a Neural Model

Thalamic neuron model

$$C \frac{dV_{i}}{dt} = -I_{L}(V_{i}) + I_{Na}(V_{i}) + I_{K}(V_{i}) + I_{T}(V_{i}) - g_{syn}w_{j}(V_{i} - E_{syn}) + I_{app},$$

$$\frac{dh_{i}}{dt} = (h_{\infty}(V_{i}) - h_{i})/\tau_{h}(V_{i}),$$

$$\frac{dr_{i}}{dt} = (r_{\infty}(V_{i}) - r_{i})/\tau_{r}(V_{i}),$$

$$\frac{dw_{i}}{dt} = \alpha(1 - w_{i})/(1 + \exp((V_{i} - V_{T})/\sigma_{T})) - \beta w_{i},$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 31/38

Application to a Neural Model

Thalamic neuron model

$$C \frac{dV_{i}}{dt} = -I_{L}(V_{i}) + I_{Na}(V_{i}) + I_{K}(V_{i}) + I_{T}(V_{i}) - g_{syn}w_{j}(V_{i} - E_{syn}) + I_{app},$$

$$\frac{dh_{i}}{dt} = (h_{\infty}(V_{i}) - h_{i})/\tau_{h}(V_{i}),$$

$$\frac{dr_{i}}{dt} = (r_{\infty}(V_{i}) - r_{i})/\tau_{r}(V_{i}),$$

$$\frac{dw_{i}}{dt} = \alpha(1 - w_{i})/(1 + \exp((V_{i} - V_{T})/\sigma_{T})) - \beta w_{i},$$

Application to a Neural Model

Thalamic neuron model

$$C \frac{dV_{i}}{dt} = -I_{L}(V_{i}) + I_{Na}(V_{i}) + I_{K}(V_{i}) + I_{T}(V_{i}) - g_{syn}w_{j}(V_{i} - E_{syn}) + I_{app},$$

$$\frac{dh_{i}}{dt} = (h_{\infty}(V_{i}) - h_{i})/\tau_{h}(V_{i}),$$

$$\frac{dr_{i}}{dt} = (r_{\infty}(V_{i}) - r_{i})/\tau_{r}(V_{i}),$$

$$\frac{dw_{i}}{dt} = \alpha(1 - w_{i})/(1 + \exp((V_{i} - V_{T})/\sigma_{T})) - \beta w_{i},$$

Bifurcation Diagram in Phase-Locked States

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ のへで 33/38

Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.

- Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi = \theta_2 \theta_1$.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 34/38)

- Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi = \theta_2 \theta_1$.

Caveat of first-order averaging theory.

- Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi = \theta_2 \theta_1$.

- Caveat of first-order averaging theory.
- ► Directly generalizable to *N* oscillators.

- Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi = \theta_2 \theta_1$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

Reduce the computational cost (Adaptive reduction)

▲□▶▲□▶▲□▶▲□▶ □ のへで 34/38

- Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi = \theta_2 \theta_1$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

- Reduce the computational cost (Adaptive reduction)
- Include heterogeneity through constant perturbations of the vector field, e.g, x_i = F(x_i)+ δH_i(x_i) +εG(x₁, x₂)

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで 34/38

- Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi = \theta_2 \theta_1$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

- Reduce the computational cost (Adaptive reduction)
- Include heterogeneity through constant perturbations of the vector field, e.g, x_i = F(x_i)+ δH_i(x_i) +εG(x₁, x₂)
- Extend reduction method to non-oscillating solutions

- Derived interaction functions H⁽ⁱ⁾ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi = \theta_2 \theta_1$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

- Reduce the computational cost (Adaptive reduction)
- Include heterogeneity through constant perturbations of the vector field, e.g, x_i = F(x_i)+ δH_i(x_i) +εG(x₁, x₂)
- Extend reduction method to non-oscillating solutions
- Extend reduction method to bursting

<ロ > < 母 > < 臣 > < 臣 > < 臣 > ○ Q @ 35/38

◆□▶ ◆昼▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 35/38

- Dan Wilson
- ► T32 NS007292, Eve Marder (YP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ へ ● 35/38

- Dan Wilson
- ► T32 NS007292, Eve Marder (YP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ へ ● 35/38

CMMI-1933583 (DW)

References

Thank you for your attention!

Ermentrout, B., Park, Y., and Wilson, D. (2019). Recent advances in coupled oscillator theory.

Philos. Trans. Roy. Soc. A, 377(2160):20190092, 16.

Park, Y. and Ermentrout, B. (2016). Weakly coupled oscillators in a slowly varying world. J. Comput. Neurosci.,

J. Comput. Neurosci., 40(3):269–281.

Park, Y. and Ermentrout, G. B. (2018). A multiple timescales approach to bridging spiking- and population-level dynamics.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8):083123. Park, Y., Heitmann, S., and Ermentrout, G. B. (2017). The utility of phase models in studying neural synchronization.

Computational Models of Brain and Behavior, pages 493–504.

Park, Y., SHAW, K. M., CHIEL, H. J., and THOMAS, P. J. (2018). The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems.

European Journal of Applied Mathematics, 29(5):905–940.

Park, Y. and Wilson, D. D. (2021). High-order accuracy computation of coupling functions for strongly coupled oscillators.

SIAM Journal on Applied Dynamical Systems, 20(3):1464–1484.

- Pérez-Cervera, A., Seara, T. M., and Huguet, G. (2020).
 - Global phase-amplitude description of oscillatory dynamics via the parameterization method. *arXiv preprint arXiv:2004.03647*.
- Wilson, D. (2020). Phase-amplitude reduction far beyond the weakly perturbed paradigm. *Physical Review E*, 101(2):022220.
- Wilson, D. and Ermentrout, B. (2019).
 Phase models beyond weak coupling.
 Physical Review Letters, 123(16):164101.

36/38

$$\begin{aligned} \frac{d\theta_i}{dt} &= \nabla \theta_i \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_i \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_i \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

◆□ ▶ < 畳 ▶ < Ξ ▶ < Ξ ▶ Ξ ∽ Q ↔ 37/38</p>

$$\blacktriangleright \mathcal{Z} \equiv \nabla \theta_i.$$

$$\begin{aligned} \frac{d\theta_i}{dt} &= \nabla \theta_i \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_i \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_i \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ◆ ○ へ ○ 37/38

 $\blacktriangleright \mathcal{Z} \equiv \nabla \theta_i.$

Similar coordinate transformation for ψ_i ($\mathcal{I} \equiv \nabla \psi_i$).

$$\begin{aligned} \frac{d\theta_i}{dt} &= \nabla \theta_i \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_i \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_i \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

 $\blacktriangleright \mathcal{Z} \equiv \nabla \theta_i.$

- Similar coordinate transformation for ψ_i ($\mathcal{I} \equiv \nabla \psi_i$).
- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_i = \nabla \theta_i(t)$.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 37/38

$$\begin{aligned} \frac{d\theta_i}{dt} &= \nabla \theta_i \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_i \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_i \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

 $\blacktriangleright \mathcal{Z} \equiv \nabla \theta_i.$

- Similar coordinate transformation for ψ_i ($\mathcal{I} \equiv \nabla \psi_i$).
- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_i = \nabla \theta_i(t)$.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 37/38

• In strong coupling theory, $\nabla \theta_i = \nabla \theta_i(\theta_i, \psi_i)$.

$$\begin{aligned} \frac{d\theta_i}{dt} &= \nabla \theta_i \cdot \frac{d\mathsf{x}_1}{dt} \\ &= \nabla \theta_i \cdot [\mathsf{F}(\mathsf{x}_1) + \varepsilon \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2)] \\ &= \nabla \theta_i \cdot \mathsf{F}(\mathsf{x}_1) + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \\ &= 1 + \varepsilon \nabla \theta_i \cdot \mathsf{G}(\mathsf{x}_1, \mathsf{x}_2) \end{aligned}$$

 $\blacktriangleright \mathcal{Z} \equiv \nabla \theta_i.$

- Similar coordinate transformation for ψ_i ($\mathcal{I} \equiv \nabla \psi_i$).
- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_i = \nabla \theta_i(t)$.
- ln strong coupling theory, $\nabla \theta_i = \nabla \theta_i(\theta_i, \psi_i)$.
- Computational strategies in [Wilson, 2020, Pérez-Cervera et al., 2020].
N-Oscillator Isostable Reduction

$$\dot{\theta}_{i} = 1 + \varepsilon \mathcal{Z}(\theta_{i}, \psi_{i}) \cdot \sum_{j=1}^{N} a_{ij} G(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}),$$
$$\dot{\psi}_{i} = \kappa \psi_{i} + \varepsilon \mathcal{I}(\theta_{i}, \psi_{i}) \cdot \sum_{j=1}^{N} a_{ij} G(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}).$$

- θ_i phase, ψ_i amplitude.
- κ slowest decaying Floquet multiplier.
- \blacktriangleright *Z* general phase response.
- I general isostable response.