A Theory of Strongly Coupled Oscillators

Youngmin Park
University of Florida

SIAM + Applied \& Numerical Analysis Seminar

October 28, 2022

Coupled Oscillators Example 1: Stomatogastric Ganglion

Crab stomatogastric ganglion (Marder lab, Brandeis U.)

Coupled Oscillators Example 1: Stomatogastric Ganglion

Crab stomatogastric ganglion (Marder lab, Brandeis U.)

- Computationally complex

Coupled Oscillators Example 1: Stomatogastric Ganglion

Crab stomatogastric ganglion (Marder lab, Brandeis U.)

- Computationally complex
- Coupled bursting neurons

Coupled Oscillators Example 1: Stomatogastric Ganglion

Crab stomatogastric ganglion (Marder lab, Brandeis U.)

- Computationally complex
- Coupled bursting neurons
- Strongly coupled heterogeneous oscillators

Coupled Oscillators Example 1: Stomatogastric Ganglion

Crab stomatogastric ganglion (Marder lab, Brandeis U.)
A
B
C

- Computationally complex
- Coupled bursting neurons
- Strongly coupled heterogeneous oscillators

Coupled Oscillators Example 2: Chemical Oscillators

Norton et al. PRL, 2019 (Fraden Lab, Brandeis U.)

Coupled Oscillators Example 2: Chemical Oscillators

Norton et al. PRL, 2019 (Fraden Lab, Brandeis U.)

- How can we understand the existence and stability of phase-locked solutions?

Limit Cycles

$$
\dot{x}=F(x)
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Limit Cycles

$$
\dot{x}=F(x)
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- T-periodic solution $\mathrm{Y}(t)$

Limit Cycles

$$
\dot{x}=F(x)
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- T-periodic solution $\mathrm{Y}(t)$
- Isolated periodic orbit

Limit Cycles

$$
\dot{x}=F(x)
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- T-periodic solution $\mathrm{Y}(t)$
- Isolated periodic orbit
- Stable

Limit Cycles

$$
\dot{x}=F(x)
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- T-periodic solution $\mathrm{Y}(t)$
- Isolated periodic orbit
- Stable

Limit Cycles

$$
\dot{x}=F(x)
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
- T-periodic solution $\mathrm{Y}(t)$
- Isolated periodic orbit
- Stable

Circadian rhythms, gene regulatory networks, central pattern generators, Belousov-Zhabotinsky, ...

Reduce Each Oscillator to Phase Angle

Reduce Each Oscillator to Phase Angle

(d)

Weak Coupling Theory

$$
\dot{\mathrm{x}}_{i}=\mathrm{F}\left(\mathrm{x}_{i}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{i}, \mathrm{x}_{3-i}\right), \quad \mathrm{x}_{i} \in \mathbb{R}^{n}, \quad i=1,2
$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction).

Weak Coupling Theory

$$
\dot{\mathrm{x}}_{i}=\mathrm{F}\left(\mathrm{x}_{i}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{i}, \mathrm{x}_{3-i}\right), \quad \mathrm{x}_{i} \in \mathbb{R}^{n}, \quad i=1,2,
$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction). Small ε explicitly allows transformation to phase $\left(\theta_{i}\right)$:

$$
\dot{\theta}_{i}=1+\varepsilon(\text { Phase Response }) * G\left(x_{i}, x_{3-i}\right), \quad \theta_{i} \in \mathbb{R} .
$$

Weak Coupling Theory

$$
\dot{\mathrm{x}}_{i}=\mathrm{F}\left(\mathrm{x}_{i}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{i}, \mathrm{x}_{3-i}\right), \quad \mathrm{x}_{i} \in \mathbb{R}^{n}, \quad i=1,2,
$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction). Small ε explicitly allows transformation to phase $\left(\theta_{i}\right)$:

$$
\dot{\theta}_{i}=1+\varepsilon(\text { Phase Response }) * \mathrm{G}\left(\mathrm{x}_{i}, \mathrm{x}_{3-i}\right), \quad \theta_{i} \in \mathbb{R} .
$$

Then study phase-difference dynamics, $\dot{\phi}=\dot{\theta}_{2}-\dot{\theta}_{1}$.

Weak Coupling Theory

$$
\dot{\mathrm{x}}_{i}=\mathrm{F}\left(\mathrm{x}_{i}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{i}, \mathrm{x}_{3-i}\right), \quad \mathrm{x}_{i} \in \mathbb{R}^{n}, \quad i=1,2,
$$

where G is a coupling term (e.g., diffusion, chemical synapse, gap junction). Small ε explicitly allows transformation to phase $\left(\theta_{i}\right)$:

$$
\dot{\theta}_{i}=1+\varepsilon(\text { Phase Response }) * \mathrm{G}\left(\mathrm{x}_{i}, \mathrm{x}_{3-i}\right), \quad \theta_{i} \in \mathbb{R}
$$

Then study phase-difference dynamics, $\dot{\phi}=\dot{\theta}_{2}-\dot{\theta}_{1}$.

Cartoon of the right-hand side of $\dot{\phi}$
Weak Coupling Theory

Weak Coupling Theory: Phase Difference Equation

Weak Coupling Theory: Initial Condition 1

Weak Coupling Theory: Initial Condition 2

Full Model Simulation

Weak Coupling Theory: Phase Differences Over Time

Full Model Simulation

Phase Difference Over Time

What Happens for Stronger Coupling?

Thalamic neural model (2×4 dimensions) with chemical synaptic coupling ($g_{\text {syn }}=\varepsilon$)

What Happens for Stronger Coupling?

Thalamic neural model (2×4 dimensions) with chemical synaptic coupling ($g_{\text {syn }}=\varepsilon$)

Takeaways from Weakly Coupled Oscillator Theory

Full Model Simulation

- Reduce two coupled oscillators to one phase difference variable.

Takeaways from Weakly Coupled Oscillator Theory

Full Model Simulation

- Reduce two coupled oscillators to one phase difference variable.
- Fixed points capture long-term phase-locking behavior.

Takeaways from Weakly Coupled Oscillator Theory

Full Model Simulation

- Reduce two coupled oscillators to one phase difference variable.
- Fixed points capture long-term phase-locking behavior.
- Generalizable to N oscillators (N algebraic equations in N unknowns).

Takeaways from Weakly Coupled Oscillator Theory

Full Model Simulation

- Reduce two coupled oscillators to one phase difference variable.
- Fixed points capture long-term phase-locking behavior.
- Generalizable to N oscillators (N algebraic equations in N unknowns).
- Want these same benefits for stronger coupling.

Derivation of Coupling Functions: Assumptions

$$
\begin{aligned}
& \dot{x}_{1}=\mathrm{F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \\
& \dot{\mathrm{x}}_{2}=\mathrm{F}\left(\mathrm{x}_{2}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

Derivation of Coupling Functions: Assumptions

$$
\begin{aligned}
& \dot{x}_{1}=\mathrm{F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \\
& \dot{\mathrm{x}}_{2}=\mathrm{F}\left(\mathrm{x}_{2}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, smooth.

Derivation of Coupling Functions: Assumptions

$$
\begin{aligned}
& \dot{x}_{1}=\mathrm{F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \\
& \dot{\mathrm{x}}_{2}=\mathrm{F}\left(\mathrm{x}_{2}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, smooth.
- Each system admits a T-periodic stable limit cycle $Y(t)$ when $\varepsilon=0$.

Derivation of Coupling Functions: Assumptions

$$
\begin{aligned}
& \dot{x}_{1}=\mathrm{F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \\
& \dot{\mathrm{x}}_{2}=\mathrm{F}\left(\mathrm{x}_{2}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, smooth.
- Each system admits a T-periodic stable limit cycle $Y(t)$ when $\varepsilon=0$.
- Limit cycles persist for $\varepsilon \neq 0$.

Derivation of Coupling Functions: Assumptions

$$
\begin{aligned}
& \dot{x}_{1}=\mathrm{F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \\
& \dot{\mathrm{x}}_{2}=\mathrm{F}\left(\mathrm{x}_{2}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, smooth.
- Each system admits a T-periodic stable limit cycle $Y(t)$ when $\varepsilon=0$.
- Limit cycles persist for $\varepsilon \neq 0$.
- $|\varepsilon| \geq 0$ not necessarily small.

Derivation of Coupling Functions: Assumptions

$$
\begin{aligned}
& \dot{x}_{1}=\mathrm{F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \\
& \dot{\mathrm{x}}_{2}=\mathrm{F}\left(\mathrm{x}_{2}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right) .
\end{aligned}
$$

- $\mathrm{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, smooth.
- Each system admits a T-periodic stable limit cycle $Y(t)$ when $\varepsilon=0$.
- Limit cycles persist for $\varepsilon \neq 0$.
- $|\varepsilon| \geq 0$ not necessarily small.
$-\mathrm{G}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, general smooth coupling function.

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

$$
\frac{d \theta_{1}}{d t}=\nabla \theta_{1} \cdot \frac{d \mathrm{x}_{1}}{d t}
$$

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

$$
\begin{aligned}
\frac{d \theta_{1}}{d t} & =\nabla \theta_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]
\end{aligned}
$$

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

$$
\begin{aligned}
\frac{d \theta_{1}}{d t} & =\nabla \theta_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

$$
\begin{aligned}
\frac{d \theta_{1}}{d t} & =\nabla \theta_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

$$
\begin{aligned}
\frac{d \theta_{1}}{d t} & =\nabla \theta_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_{i}=\nabla \theta_{i}(t)$.

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

$$
\begin{aligned}
\frac{d \theta_{1}}{d t} & =\nabla \theta_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_{i}=\nabla \theta_{i}(t)$.
- In non-weak coupling theory, $\nabla \theta_{i}=\mathcal{Z}\left(\theta_{i}, \psi_{i}\right)$.

Isostable Reduction: Change of Coordinates

Transform the system into phase θ_{i}.

$$
\begin{aligned}
\frac{d \theta_{1}}{d t} & =\nabla \theta_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_{i}=\nabla \theta_{i}(t)$.
- In non-weak coupling theory, $\nabla \theta_{i}=\mathcal{Z}\left(\theta_{i}, \psi_{i}\right)$.
- ψ_{i} is an amplitude coordinate.

Isostable Reduction: Change of Coordinates in ψ_{1}

$$
\frac{d \psi_{1}}{d t}=\nabla \psi_{1} \cdot \frac{d \mathrm{x}_{1}}{d t}
$$

Isostable Reduction: Change of Coordinates in ψ_{1}

$$
\begin{aligned}
\frac{d \psi_{1}}{d t} & =\nabla \psi_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \psi_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right]
\end{aligned}
$$

Isostable Reduction: Change of Coordinates in ψ_{1}

$$
\begin{aligned}
\frac{d \psi_{1}}{d t} & =\nabla \psi_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \psi_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \psi_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \psi_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

Isostable Reduction: Change of Coordinates in ψ_{1}

$$
\begin{aligned}
\frac{d \psi_{1}}{d t} & =\nabla \psi_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \psi_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \psi_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \psi_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =\kappa \psi_{1}+\varepsilon \nabla \psi_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

Isostable Reduction: Change of Coordinates in ψ_{1}

$$
\begin{aligned}
\frac{d \psi_{1}}{d t} & =\nabla \psi_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \psi_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \psi_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \psi_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =\kappa \psi_{1}+\varepsilon \nabla \psi_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- κ Floquet exponent.

Isostable Reduction: Change of Coordinates in ψ_{1}

$$
\begin{aligned}
\frac{d \psi_{1}}{d t} & =\nabla \psi_{1} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \psi_{1} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \psi_{1} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \psi_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =\kappa \psi_{1}+\varepsilon \nabla \psi_{1} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- κ Floquet exponent.
- $\nabla \psi_{i} \equiv \mathcal{I}\left(\theta_{i}, \psi_{i}\right)$ quantifies amplitude shifts

Isostable Reduction: Change of Coordinates

[Park and Wilson, 2021]

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- θ_{i} phase, ψ_{i} amplitude.

Isostable Reduction: Change of Coordinates

[Park and Wilson, 2021]

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- θ_{i} phase, ψ_{i} amplitude.
- \mathcal{Z} general phase response.

Isostable Reduction: Change of Coordinates

[Park and Wilson, 2021]

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- θ_{i} phase, ψ_{i} amplitude.
- \mathcal{Z} general phase response.
- I general isostable (amplitude) response.

Isostable Reduction: Change of Coordinates

[Park and Wilson, 2021]

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right), \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) .
\end{aligned}
$$

- θ_{i} phase, ψ_{i} amplitude.
- \mathcal{Z} general phase response.
- I general isostable (amplitude) response.
- Reduced a system of $2 \times n$ equations into 4 equations.

Isostable Reduction: Change of Coordinates

[Park and Wilson, 2021]

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- θ_{i} phase, ψ_{i} amplitude.
- \mathcal{Z} general phase response.
- I general isostable (amplitude) response.
- Reduced a system of $2 \times n$ equations into 4 equations.
- Next step: reduce these 4 equations into 2 equations.

Higher-Order Coupling Functions

Expand everything in ψ, ε :

$$
\mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \approx Z^{(0)}\left(\theta_{i}\right)+\psi_{i} Z^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} Z^{(2)}\left(\theta_{i}\right)+\ldots
$$

Higher-Order Coupling Functions

Expand everything in ψ, ε :

$$
\begin{aligned}
& \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \approx \mathrm{Z}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{Z}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{Z}^{(2)}\left(\theta_{i}\right)+\ldots, \\
& \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \approx \mathrm{I}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathbf{I}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{I}^{(2)}\left(\theta_{i}\right)+\ldots
\end{aligned}
$$

Higher-Order Coupling Functions

Expand everything in ψ, ε :

$$
\begin{aligned}
\mathcal{Z}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{Z}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{Z}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{Z}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\mathcal{I}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{I}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{I}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{I}^{(2)}\left(\theta_{i}\right)+\ldots \\
\mathrm{x}_{i}(t) & \approx \mathrm{Y}\left(\theta_{i}\right)+\psi_{i} \mathrm{~g}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{~g}^{(2)}\left(\theta_{i}\right)+\ldots
\end{aligned}
$$

Higher-Order Coupling Functions

Expand everything in ψ, ε :

$$
\begin{aligned}
\mathcal{Z}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{Z}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{Z}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{Z}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\mathcal{I}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{I}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{I}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{I}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\mathrm{x}_{i}(t) & \approx \mathrm{Y}\left(\theta_{i}\right)+\psi_{i} \mathrm{~g}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{~g}^{(2)}\left(\theta_{i}\right)+\ldots \\
\psi_{i}(t) & \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots
\end{aligned}
$$

Higher-Order Coupling Functions

Expand everything in ψ, ε :

$$
\begin{aligned}
\mathcal{Z}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{Z}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{Z}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{Z}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\mathcal{I}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{I}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{I}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{I}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\mathrm{x}_{i}(t) & \approx \mathrm{Y}\left(\theta_{i}\right)+\psi_{i} \mathrm{~g}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{~g}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\psi_{i}(t) & \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots
\end{aligned}
$$

- Put into the phase-amplitude equations

Higher-Order Coupling Functions

Expand everything in ψ, ε :

$$
\begin{aligned}
\mathcal{Z}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{Z}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{Z}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{Z}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\mathcal{I}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{I}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{I}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{I}^{(2)}\left(\theta_{i}\right)+\ldots, \\
x_{i}(t) & \approx \mathrm{Y}\left(\theta_{i}\right)+\psi_{i} \mathrm{~g}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{~g}^{(2)}\left(\theta_{i}\right)+\ldots \\
\psi_{i}(t) & \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots
\end{aligned}
$$

- Put into the phase-amplitude equations
- Combinatorial explosion of terms.

Higher-Order Coupling Functions

Expand everything in ψ, ε :

$$
\begin{aligned}
\mathcal{Z}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{Z}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{Z}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{Z}^{(2)}\left(\theta_{i}\right)+\ldots, \\
\mathcal{I}\left(\theta_{i}, \psi_{i}\right) & \approx \mathrm{I}^{(0)}\left(\theta_{i}\right)+\psi_{i} \mathrm{I}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{I}^{(2)}\left(\theta_{i}\right)+\ldots, \\
x_{i}(t) & \approx \mathrm{Y}\left(\theta_{i}\right)+\psi_{i} \mathrm{~g}^{(1)}\left(\theta_{i}\right)+\psi_{i}^{2} \mathrm{~g}^{(2)}\left(\theta_{i}\right)+\ldots \\
\psi_{i}(t) & \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots
\end{aligned}
$$

- Put into the phase-amplitude equations
- Combinatorial explosion of terms.
- Use symbolic packages to collect terms.

Higher-Order Coupling Functions

Eliminate the amplitude equations

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- Each term in the expansion $\psi_{i}(t) \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots$ satisfies a linear ODE.

Higher-Order Coupling Functions

Eliminate the amplitude equations

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- Each term in the expansion $\psi_{i}(t) \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots$ satisfies a linear ODE.
- Solve for each $p_{i}^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.

Higher-Order Coupling Functions

Eliminate the amplitude equations

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- Each term in the expansion $\psi_{i}(t) \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots$ satisfies a linear ODE.
- Solve for each $p_{i}^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.
- Plug back into the equation for θ_{i}.

Higher-Order Coupling Functions

Eliminate the amplitude equations

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- Each term in the expansion $\psi_{i}(t) \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots$ satisfies a linear ODE.
- Solve for each $p_{i}^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.
- Plug back into the equation for θ_{i}.
- Now we have 2 equations, one for each θ_{i}.

Higher-Order Coupling Functions

Eliminate the amplitude equations

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)
\end{aligned}
$$

- Each term in the expansion $\psi_{i}(t) \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots$ satisfies a linear ODE.
- Solve for each $p_{i}^{(k)}$ in terms of $p^{(k-1)}$ terms or lower.
- Plug back into the equation for θ_{i}.
- Now we have 2 equations, one for each θ_{i}.
$\dot{\theta}_{i}=1+\varepsilon\left[Z^{(0)}\left(\theta_{i}\right)+\psi_{i} Z^{(1)}\left(\theta_{i}\right)+\psi_{i} Z^{(2)}\left(\theta_{i}\right)+\ldots\right] \cdot \mathrm{G}\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right)$,
where $\psi_{i}(t) \approx \varepsilon p_{i}^{(1)}(t)+\varepsilon^{2} p_{i}^{(2)}(t)+\varepsilon^{3} p_{i}^{(3)}(t)+\ldots$.

Higher-Order Coupling Functions

Finally, collect in powers of ε and take the average

$$
\dot{\theta}_{1}=\varepsilon \mathcal{H}^{(1)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{2} \mathcal{H}^{(2)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{3} \mathcal{H}^{(3)}\left(\theta_{2}-\theta_{1}\right)+\ldots,
$$

where

$$
\begin{aligned}
& \mathcal{H}^{(1)}(\theta)= \frac{1}{T} \int_{0}^{T} Z^{(0)} \cdot M^{(0,0)} d s . \\
& \mathcal{H}^{(2)}(\theta)= \frac{1}{T} \int_{0}^{T} p_{1}^{(1)} Z^{(1)} \cdot M^{(0,0)}+p_{2}^{(1)} Z^{(0)} \cdot M^{(0,1)}+p_{1}^{(1)} Z^{(0)} M^{(1,0)} d s . \\
& \mathcal{H}^{(3)}(\theta)=\frac{1}{T} \int_{0}^{T}\left[p_{1}^{(2)} Z^{(1)} \cdot M^{(0,0)}+\left(p_{1}^{(1)}\right)^{2} Z^{(2)} \cdot M^{(0,0)}\right. \\
&\left.\quad+p_{1}^{(1)} p_{2}^{(1)} Z^{(1)} \cdot M^{(0,1)}+\left(p_{1}^{(1)}\right)^{2} Z^{(1)} \cdot M^{(1,0)}\right] d s .
\end{aligned}
$$

Higher-Order Coupling Functions

Finally, collect in powers of ε and take the average

$$
\dot{\theta}_{1}=\varepsilon \mathcal{H}^{(1)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{2} \mathcal{H}^{(2)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{3} \mathcal{H}^{(3)}\left(\theta_{2}-\theta_{1}\right)+\ldots,
$$

where

$$
\begin{aligned}
& \mathcal{H}^{(1)}(\theta)= \frac{1}{T} \int_{0}^{T} Z^{(0)} \cdot M^{(0,0)} d s . \\
& \mathcal{H}^{(2)}(\theta)= \frac{1}{T} \int_{0}^{T} p_{1}^{(1)} Z^{(1)} \cdot M^{(0,0)}+p_{2}^{(1)} Z^{(0)} \cdot M^{(0,1)}+p_{1}^{(1)} Z^{(0)} M^{(1,0)} d s . \\
& \mathcal{H}^{(3)}(\theta)=\frac{1}{T} \int_{0}^{T}\left[p_{1}^{(2)} Z^{(1)} \cdot M^{(0,0)}+\left(p_{1}^{(1)}\right)^{2} Z^{(2)} \cdot M^{(0,0)}\right. \\
&\left.\quad+p_{1}^{(1)} p_{2}^{(1)} Z^{(1)} \cdot M^{(0,1)}+\left(p_{1}^{(1)}\right)^{2} Z^{(1)} \cdot M^{(1,0)}\right] d s .
\end{aligned}
$$

- $M^{(i, j)}$ are partial derivatives of the coupling function G.

Higher-Order Coupling Functions

Finally, collect in powers of ε and take the average

$$
\dot{\theta}_{1}=\varepsilon \mathcal{H}^{(1)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{2} \mathcal{H}^{(2)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{3} \mathcal{H}^{(3)}\left(\theta_{2}-\theta_{1}\right)+\ldots,
$$

where

$$
\begin{aligned}
& \mathcal{H}^{(1)}(\theta)= \frac{1}{T} \int_{0}^{T} Z^{(0)} \cdot M^{(0,0)} d s . \\
& \mathcal{H}^{(2)}(\theta)= \frac{1}{T} \int_{0}^{T} p_{1}^{(1)} Z^{(1)} \cdot M^{(0,0)}+p_{2}^{(1)} Z^{(0)} \cdot M^{(0,1)}+p_{1}^{(1)} Z^{(0)} M^{(1,0)} d s . \\
& \mathcal{H}^{(3)}(\theta)=\frac{1}{T} \int_{0}^{T}\left[p_{1}^{(2)} Z^{(1)} \cdot M^{(0,0)}+\left(p_{1}^{(1)}\right)^{2} Z^{(2)} \cdot M^{(0,0)}\right. \\
&\left.\quad+p_{1}^{(1)} p_{2}^{(1)} Z^{(1)} \cdot M^{(0,1)}+\left(p_{1}^{(1)}\right)^{2} Z^{(1)} \cdot M^{(1,0)}\right] d s .
\end{aligned}
$$

- $M^{(i, j)}$ are partial derivatives of the coupling function G.
- $Z^{(k)}=Z^{(k)}(s), M^{(k, \ell)}=M^{(k, \ell)}(s, \theta+s)$,

$$
p_{1}^{(k)}=p_{1}^{(k)}(s, \theta+s), p_{2}^{(k)}=p_{2}^{(k)}(\theta+s, s)
$$

Higher-Order Coupling Functions

$$
\dot{\theta}_{1}=\varepsilon \mathcal{H}^{(1)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{2} \mathcal{H}^{(2)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{3} \mathcal{H}^{(3)}\left(\theta_{2}-\theta_{1}\right)+\ldots,
$$

- Caveat: used first-order averaging theory:

$$
\dot{\mathrm{x}}=\varepsilon \mathrm{F}(\mathrm{x}, t, \varepsilon), \quad \mathrm{x}(0)=\mathrm{x}_{0}
$$

F is T-periodic in t. Consider the averaged equation,

$$
\dot{\mathrm{z}}=\varepsilon \overline{\mathrm{F}}(\mathrm{z}), \quad \mathrm{z}(0)=\mathrm{z}_{0}
$$

where $\overline{\mathrm{F}}=\frac{1}{T} \int_{0}^{T} \mathrm{~F}(\mathrm{x}, \mathrm{s}, 0) \mathrm{ds}$. Then $\mathrm{x}(t)=\mathrm{z}(t)+O(\varepsilon)$ for $O(1 / \varepsilon)$ time.

Higher-Order Coupling Functions

$$
\dot{\theta}_{1}=\varepsilon \mathcal{H}^{(1)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{2} \mathcal{H}^{(2)}\left(\theta_{2}-\theta_{1}\right)+\varepsilon^{3} \mathcal{H}^{(3)}\left(\theta_{2}-\theta_{1}\right)+\ldots,
$$

- Caveat: used first-order averaging theory:

$$
\dot{x}=\varepsilon \mathrm{F}(\mathrm{x}, t, \varepsilon), \quad \mathrm{x}(0)=\mathrm{x}_{0}
$$

F is T-periodic in t. Consider the averaged equation,

$$
\dot{\mathrm{z}}=\varepsilon \overline{\mathrm{F}}(\mathrm{z}), \quad \mathrm{z}(0)=\mathrm{z}_{0}
$$

where $\overline{\mathrm{F}}=\frac{1}{T} \int_{0}^{T} \mathrm{~F}(\mathrm{x}, \mathrm{s}, 0) \mathrm{ds}$. Then $\mathrm{x}(t)=\mathrm{z}(t)+O(\varepsilon)$ for $O(1 / \varepsilon)$ time.

- In practice, first-order averaging is sufficient.

Phase Difference Dynamics

Let $\phi=\theta_{2}-\theta_{1}$.

$$
\begin{aligned}
\dot{\phi}= & \varepsilon\left[\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)\right] \\
& +\varepsilon^{2}\left[\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)\right] \\
& +\varepsilon^{3}\left[\mathcal{H}^{(3)}(-\phi)-\mathcal{H}^{(3)}(\phi)\right]+\ldots,
\end{aligned}
$$

Phase Difference Dynamics

Let $\phi=\theta_{2}-\theta_{1}$.

$$
\begin{aligned}
\dot{\phi}= & \varepsilon\left[\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)\right] \\
& +\varepsilon^{2}\left[\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)\right] \\
& +\varepsilon^{3}\left[\mathcal{H}^{(3)}(-\phi)-\mathcal{H}^{(3)}(\phi)\right]+\ldots,
\end{aligned}
$$

- $\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)$: Classic weak coupling theory

Phase Difference Dynamics

Let $\phi=\theta_{2}-\theta_{1}$.

$$
\begin{aligned}
\dot{\phi}= & \varepsilon\left[\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)\right] \\
& +\varepsilon^{2}\left[\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)\right] \\
& +\varepsilon^{3}\left[\mathcal{H}^{(3)}(-\phi)-\mathcal{H}^{(3)}(\phi)\right]+\ldots,
\end{aligned}
$$

- $\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)$: Classic weak coupling theory
- $\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)$: [Wilson and Ermentrout, 2019]

Phase Difference Dynamics

Let $\phi=\theta_{2}-\theta_{1}$.

$$
\begin{aligned}
\dot{\phi}= & \varepsilon\left[\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)\right] \\
& +\varepsilon^{2}\left[\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)\right] \\
& +\varepsilon^{3}\left[\mathcal{H}^{(3)}(-\phi)-\mathcal{H}^{(3)}(\phi)\right]+\ldots,
\end{aligned}
$$

- $\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)$: Classic weak coupling theory
- $\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)$: [Wilson and Ermentrout, 2019]
- $\mathcal{H}^{(3)}(-\phi)-\mathcal{H}^{(3)}(\phi)$ and beyond: [Park and Wilson, 2021]

Phase Difference Dynamics

Let $\phi=\theta_{2}-\theta_{1}$.

$$
\begin{aligned}
\dot{\phi}= & \varepsilon\left[\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)\right] \\
& +\varepsilon^{2}\left[\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)\right] \\
& +\varepsilon^{3}\left[\mathcal{H}^{(3)}(-\phi)-\mathcal{H}^{(3)}(\phi)\right]+\ldots,
\end{aligned}
$$

- $\mathcal{H}^{(1)}(-\phi)-\mathcal{H}^{(1)}(\phi)$: Classic weak coupling theory
- $\mathcal{H}^{(2)}(-\phi)-\mathcal{H}^{(2)}(\phi)$: [Wilson and Ermentrout, 2019]
- $\mathcal{H}^{(3)}(-\phi)-\mathcal{H}^{(3)}(\phi)$ and beyond: [Park and Wilson, 2021]

Takeaway: A scalar ODE describes the phase difference dynamics for ε not necessarily small.

Application to a "Simple" Model

Complex Ginzburg-Landau

$$
\begin{aligned}
& x_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) x_{j}-q\left(x_{j}^{2}+y_{j}^{2}\right) y_{j}+\varepsilon\left[x_{k}-x_{j}-d\left(y_{k}-y_{j}\right)\right], \\
& y_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) y_{j}+q\left(x_{j}^{2}+y_{j}^{2}\right) x_{j}+\varepsilon\left[y_{k}-y_{j}+d\left(x_{k}-x_{j}\right)\right],
\end{aligned}
$$

$j=3-k$ with $k=1,2$.

- Tractable model.

Application to a "Simple" Model

Complex Ginzburg-Landau

$$
\begin{aligned}
& x_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) x_{j}-q\left(x_{j}^{2}+y_{j}^{2}\right) y_{j}+\varepsilon\left[x_{k}-x_{j}-d\left(y_{k}-y_{j}\right)\right], \\
& y_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) y_{j}+q\left(x_{j}^{2}+y_{j}^{2}\right) x_{j}+\varepsilon\left[y_{k}-y_{j}+d\left(x_{k}-x_{j}\right)\right],
\end{aligned}
$$

$j=3-k$ with $k=1,2$.

- Tractable model.
- For $d=0.4, \varepsilon=0.3$, antiphase is stable.

Application to a "Simple" Model

Complex Ginzburg-Landau

$$
\begin{aligned}
& x_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) x_{j}-q\left(x_{j}^{2}+y_{j}^{2}\right) y_{j}+\varepsilon\left[x_{k}-x_{j}-d\left(y_{k}-y_{j}\right)\right], \\
& y_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) y_{j}+q\left(x_{j}^{2}+y_{j}^{2}\right) x_{j}+\varepsilon\left[y_{k}-y_{j}+d\left(x_{k}-x_{j}\right)\right],
\end{aligned}
$$

$j=3-k$ with $k=1,2$.

- Tractable model.
- For $d=0.4, \varepsilon=0.3$, antiphase is stable.
- Compare to the reduced equations:

Application to a "Simple" Model

Complex Ginzburg-Landau

$$
\begin{aligned}
& x_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) x_{j}-q\left(x_{j}^{2}+y_{j}^{2}\right) y_{j}+\varepsilon\left[x_{k}-x_{j}-d\left(y_{k}-y_{j}\right)\right], \\
& y_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) y_{j}+q\left(x_{j}^{2}+y_{j}^{2}\right) x_{j}+\varepsilon\left[y_{k}-y_{j}+d\left(x_{k}-x_{j}\right)\right],
\end{aligned}
$$

$j=3-k$ with $k=1,2$.

- Tractable model.
- For $d=0.4, \varepsilon=0.3$, antiphase is stable.
- Compare to the reduced equations:

Application to a "Simple" Model

Complex Ginzburg-Landau

$$
\begin{aligned}
& x_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) x_{j}-q\left(x_{j}^{2}+y_{j}^{2}\right) y_{j}+\varepsilon\left[x_{k}-x_{j}-d\left(y_{k}-y_{j}\right)\right], \\
& y_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) y_{j}+q\left(x_{j}^{2}+y_{j}^{2}\right) x_{j}+\varepsilon\left[y_{k}-y_{j}+d\left(x_{k}-x_{j}\right)\right],
\end{aligned}
$$

$j=3-k$ with $k=1,2$.

- Tractable model.
- For $d=0.4, \varepsilon=0.3$, antiphase is stable.
- Compare to the reduced equations:

Application to a "Simple" Model

Complex Ginzburg-Landau

$$
\begin{aligned}
& x_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) x_{j}-q\left(x_{j}^{2}+y_{j}^{2}\right) y_{j}+\varepsilon\left[x_{k}-x_{j}-d\left(y_{k}-y_{j}\right)\right], \\
& y_{j}^{\prime}=\left(1-x_{j}^{2}-y_{j}^{2}\right) y_{j}+q\left(x_{j}^{2}+y_{j}^{2}\right) x_{j}+\varepsilon\left[y_{k}-y_{j}+d\left(x_{k}-x_{j}\right)\right],
\end{aligned}
$$

$j=3-k$ with $k=1,2$.

- Tractable model.
- For $d=0.4, \varepsilon=0.3$, antiphase is stable.
- Compare to the reduced equations:

Application to a "Simple" Model: Two Parameter Diagram

Application to a "Simple" Model: Two Parameter Diagram

Application to a "Simple" Model: Two Parameter Diagram

Application to a Neural Model

Thalamic neuron model

$$
\begin{aligned}
C \frac{d V_{i}}{d t} & =-I_{\mathrm{L}}\left(V_{i}\right)+I_{\mathrm{Na}}\left(V_{i}\right)+I_{\mathrm{K}}\left(V_{i}\right)+I_{\mathrm{T}}\left(V_{i}\right)-g_{\mathrm{syn}} w_{j}\left(V_{i}-E_{\mathrm{syn}}\right)+I_{\mathrm{app}} \\
\frac{d h_{i}}{d t} & =\left(h_{\infty}\left(V_{i}\right)-h_{i}\right) / \tau_{h}\left(V_{i}\right) \\
\frac{d r_{i}}{d t} & =\left(r_{\infty}\left(V_{i}\right)-r_{i}\right) / \tau_{r}\left(V_{i}\right) \\
\frac{d w_{i}}{d t} & =\alpha\left(1-w_{i}\right) /\left(1+\exp \left(\left(V_{i}-V_{\mathrm{T}}\right) / \sigma_{T}\right)\right)-\beta w_{i}
\end{aligned}
$$

Application to a Neural Model

Thalamic neuron model

$$
\begin{aligned}
C \frac{d V_{i}}{d t} & =-I_{\mathrm{L}}\left(V_{i}\right)+I_{\mathrm{Na}}\left(V_{i}\right)+I_{\mathrm{K}}\left(V_{i}\right)+I_{\mathrm{T}}\left(V_{i}\right)-g_{\mathrm{syn}} w_{j}\left(V_{i}-E_{\mathrm{syn}}\right)+I_{\mathrm{app}} \\
\frac{d h_{i}}{d t} & =\left(h_{\infty}\left(V_{i}\right)-h_{i}\right) / \tau_{h}\left(V_{i}\right) \\
\frac{d r_{i}}{d t} & =\left(r_{\infty}\left(V_{i}\right)-r_{i}\right) / \tau_{r}\left(V_{i}\right) \\
\frac{d w_{i}}{d t} & =\alpha\left(1-w_{i}\right) /\left(1+\exp \left(\left(V_{i}-V_{\mathrm{T}}\right) / \sigma_{T}\right)\right)-\beta w_{i}
\end{aligned}
$$

Application to a Neural Model

Thalamic neuron model

$$
\begin{aligned}
C \frac{d V_{i}}{d t} & =-I_{\mathrm{L}}\left(V_{i}\right)+I_{\mathrm{Na}}\left(V_{i}\right)+I_{\mathrm{K}}\left(V_{i}\right)+I_{\mathrm{T}}\left(V_{i}\right)-g_{\mathrm{syn}} w_{j}\left(V_{i}-E_{\mathrm{syn}}\right)+I_{\mathrm{app}} \\
\frac{d h_{i}}{d t} & =\left(h_{\infty}\left(V_{i}\right)-h_{i}\right) / \tau_{h}\left(V_{i}\right) \\
\frac{d r_{i}}{d t} & =\left(r_{\infty}\left(V_{i}\right)-r_{i}\right) / \tau_{r}\left(V_{i}\right) \\
\frac{d w_{i}}{d t} & =\alpha\left(1-w_{i}\right) /\left(1+\exp \left(\left(V_{i}-V_{\mathrm{T}}\right) / \sigma_{T}\right)\right)-\beta w_{i}
\end{aligned}
$$

Bifurcation Diagram in Phase-Locked States

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi=\theta_{2}-\theta_{1}$.

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi=\theta_{2}-\theta_{1}$.
- Caveat of first-order averaging theory.

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi=\theta_{2}-\theta_{1}$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi=\theta_{2}-\theta_{1}$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

- Reduce the computational cost (Adaptive reduction)

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi=\theta_{2}-\theta_{1}$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

- Reduce the computational cost (Adaptive reduction)
- Include heterogeneity through constant perturbations of the vector field, e.g, $\dot{x}_{i}=\mathrm{F}\left(\mathrm{x}_{i}\right)+\delta H_{i}\left(\mathrm{x}_{i}\right)+\varepsilon G\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi=\theta_{2}-\theta_{1}$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

- Reduce the computational cost (Adaptive reduction)
- Include heterogeneity through constant perturbations of the vector field, e.g, $\dot{x}_{i}=\mathrm{F}\left(\mathrm{x}_{i}\right)+\delta H_{i}\left(\mathrm{x}_{i}\right)+\varepsilon G\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
- Extend reduction method to non-oscillating solutions

Summary and Future Directions

- Derived interaction functions $\mathcal{H}^{(i)}$ in the case of strong coupling.
- Derived a scalar ODE for the phase difference dynamics $\phi=\theta_{2}-\theta_{1}$.
- Caveat of first-order averaging theory.
- Directly generalizable to N oscillators.

Future Directions

- Reduce the computational cost (Adaptive reduction)
- Include heterogeneity through constant perturbations of the vector field, e.g, $\dot{x}_{i}=\mathrm{F}\left(\mathrm{x}_{i}\right)+\delta H_{i}\left(\mathrm{x}_{i}\right)+\varepsilon G\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
- Extend reduction method to non-oscillating solutions
- Extend reduction method to bursting

Acknowledgements

Acknowledgements

- Dan Wilson

Acknowledgements

- Dan Wilson
- T32 NS007292, Eve Marder (YP)

Acknowledgements

- Dan Wilson
- T32 NS007292, Eve Marder (YP)
- CMMI-1933583 (DW)

References

Thank you for your attention！Ermentrout，B．，Park，Y．， and Wilson，D．（2019）．
Recent advances in coupled oscillator theory．
Philos．Trans．Roy．Soc．A， 377（2160）：20190092， 16.
Rark，Y．and Ermentrout，B． （2016）．
Weakly coupled oscillators in a slowly varying world．
J．Comput．Neurosci．， 40（3）：269－281．

围 Park，Y．and Ermentrout， G．B．（2018）．
A multiple timescales approach to bridging spiking－and population－level dynamics．
Chaos：An Interdisciplinary
Journal of Nonlinear
Science，28（8）：083123．

Park，Y．，Heitmann，S．，and Ermentrout，G．B．（2017）．
The utility of phase models in studying neural synchronization．
Computational Models of Brain and Behavior，pages 493－504．
㞒 Park，Y．，SHAW，K．M．， CHIEL，H．J．，and
THOMAS，P．J．（2018）．
The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems．
European Journal of Applied Mathematics， 29（5）：905－940．
－Park，Y．and Wilson，D．D． （2021）．
High－order accuracy computation of coupling functions for strongly coupled oscillators．

SIAM Journal on Applied
Dynamical Systems， 20（3）：1464－1484．
局 Pérez－Cervera，A．，Seara， T．M．，and Huguet，G．
（2020）．
Global phase－amplitude description of oscillatory dynamics via the parameterization method．
arXiv preprint
arXiv：2004．03647．
Wilson，D．（2020）．
Phase－amplitude reduction
far beyond the weakly perturbed paradigm．
Physical Review E， 101（2）：022220．

Wilson，D．and Ermentrout， B．（2019）．
Phase models beyond weak coupling．
Physical Review Letters，
123（16）：164101．

Two-Oscillator Isostable Reduction: Change of Coordinates

$$
\begin{aligned}
\frac{d \theta_{i}}{d t} & =\nabla \theta_{i} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{i} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{i} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- $\mathcal{Z} \equiv \nabla \theta_{i}$.

Two-Oscillator Isostable Reduction: Change of Coordinates

$$
\begin{aligned}
\frac{d \theta_{i}}{d t} & =\nabla \theta_{i} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{i} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{i} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- $\mathcal{Z} \equiv \nabla \theta_{i}$.
- Similar coordinate transformation for $\psi_{i}\left(\mathcal{I} \equiv \nabla \psi_{i}\right)$.

Two-Oscillator Isostable Reduction: Change of Coordinates

$$
\begin{aligned}
\frac{d \theta_{i}}{d t} & =\nabla \theta_{i} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{i} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{i} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- $\mathcal{Z} \equiv \nabla \theta_{i}$.
- Similar coordinate transformation for $\psi_{i}\left(\mathcal{I} \equiv \nabla \psi_{i}\right)$.
- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_{i}=\nabla \theta_{i}(t)$.

Two-Oscillator Isostable Reduction: Change of Coordinates

$$
\begin{aligned}
\frac{d \theta_{i}}{d t} & =\nabla \theta_{i} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{i} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{i} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- $\mathcal{Z} \equiv \nabla \theta_{i}$.
- Similar coordinate transformation for $\psi_{i}\left(\mathcal{I} \equiv \nabla \psi_{i}\right)$.
- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_{i}=\nabla \theta_{i}(t)$.
- In strong coupling theory, $\nabla \theta_{i}=\nabla \theta_{i}\left(\theta_{i}, \psi_{i}\right)$.

Two-Oscillator Isostable Reduction: Change of Coordinates

$$
\begin{aligned}
\frac{d \theta_{i}}{d t} & =\nabla \theta_{i} \cdot \frac{d \mathrm{x}_{1}}{d t} \\
& =\nabla \theta_{i} \cdot\left[\mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right] \\
& =\nabla \theta_{i} \cdot \mathrm{~F}\left(\mathrm{x}_{1}\right)+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& =1+\varepsilon \nabla \theta_{i} \cdot \mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

- $\mathcal{Z} \equiv \nabla \theta_{i}$.
- Similar coordinate transformation for $\psi_{i}\left(\mathcal{I} \equiv \nabla \psi_{i}\right)$.
- In classic weak coupling theory, $\varepsilon \ll 1$ and $\nabla \theta_{i}=\nabla \theta_{i}(t)$.
- In strong coupling theory, $\nabla \theta_{i}=\nabla \theta_{i}\left(\theta_{i}, \psi_{i}\right)$.
- Computational strategies in [Wilson, 2020, Pérez-Cervera et al., 2020].

N-Oscillator Isostable Reduction

$$
\begin{aligned}
\dot{\theta}_{i} & =1+\varepsilon \mathcal{Z}\left(\theta_{i}, \psi_{i}\right) \cdot \sum_{j=1}^{N} a_{i j} G\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right), \\
\dot{\psi}_{i} & =\kappa \psi_{i}+\varepsilon \mathcal{I}\left(\theta_{i}, \psi_{i}\right) \cdot \sum_{j=1}^{N} a_{i j} G\left(\theta_{i}, \psi_{i}, \theta_{j}, \psi_{j}\right) .
\end{aligned}
$$

- θ_{i} phase, ψ_{i} amplitude.
- κ slowest decaying Floquet multiplier.
- \mathcal{Z} general phase response.
- I general isostable response.

